
Parallel IO in Code_Saturne

Charles MOULINEC

Webminar – ARCHER – 30/04/14

STFC Daresbury Laboratory, UK

 Acknowledgements to:

 Yvan Fournier from EDF R&D, FR

CCP12, UKTC and The Hartree Centre

Motivation (1)

High-End Machines offer hope for more multi-physics & multi-scale
for engineering in ever more detailed configurations.

Huge effort has been dedicated to improve/optimise solvers (in our
case Navier-Stokes equation solvers) for them to scale on the current
existing petaflop machines, but arguably less time is dedicated by
CFD developers to IOs.

Several types of IOs and some way around loading/writing huge data
files have been identified:-
-INPUT: mesh, domain partition (if already known), restart file (if
needed), input data
-OUTPUT: mesh (if changed, with added periodicity for instance),
domain partition (if computed by the code), listing file, post-
processing file, checkpoint, probes

Motivation (2)

Ways around exist to avoid loading full data set for:-
-INPUT:-

 -mesh (mesh joining and mesh multiplication)
 -domain partition (partition re-computed by the code)

-OUTPUT:-
 -pre-processed mesh (not needed, because computed by the

code)
 -domain partition (not needed because computed by the code)
 -post-processing (co-processing, for instance using Catalyst)

But not for:-
-INPUT:-

 -restart file, as/if the whole flow field is needed
-OUTPUT:-

 -checkpoint file, as/if the whole flow field is needed

Contents

Motivation
Contents

Main Features of Code_Saturne
Toolchain

Two Applications
Architectures

On the Fly Mesh Generation: Mesh Multiplication
Block-Based IO Strategy
Test-Case Configuration

Scalability at Scale
IO using HECToR (Lustre)

Results - ARCHER (Lustre) vs Blue Joule (GPFS)
Conclusions - Perspectives

Technology
-Co-located finite volume, arbitrary unstructured meshes, predictor-corrector
-350 000 lines of code, 37% Fortran, 50% C, 13% Python
-MPI for distributed-memory and some openMP for shared-memory machines

Physical modeling
-Laminar and turbulent flows: k-eps, k-omega, SST, v2f, RSM, LES models
-Radiative transfer (DOM, P-1)
-Coal, heavy-fuel and gas combustion
-Electric arcs and Joule effect
-Lagrangian module for particles tracking
-Atmospheric modeling (merging Mercure_Saturne)
-ALE method for deformable meshes
-Rotor / stator interaction for pump modeling, for marine turbines

Flexibility
-Portability (Unix, Linux and MacOS X)
-Graphical User Interface with possible integration within the SALOME platform

Code_Saturne’s Features

Toolchain
Reduced number of tools

•  Each with rich functionality
•  Natural separation between interactive and potentially long-running parts
•  In-line (pdf) documentation

Example of Applications

Hydrofoil

Free surface modelling (ALE)

Thermofluids study of the hot box dome AGR (EDF Energy)

•  Complex flow due through the
forest of tubes

•  Calculation shows little mixing
in the centre of the dome

•  Temperatures at the dome
highest where thermocouples
are located

Architectures

ARCHER – XC30 / Lustre

3008 Compute nodes: two 2.7 GHz,
12-core E5-2697 v2 (Ivy Bridge) series
p rocessors . Wi th in the node ,
QuickPath Interconnect (QPI) links to
connect the 2 processors

The Cray Aries interconnect links all
compute nodes in a Dragonfly
topology.

Compute nodes access the file system
via IO nodes running the Cray Data
Virtualization Service (DVS)

Blue Joule – BGQ / GPFS

6 racks, each rack containing 1,024
16-core, 64 bit, 1.60 GHz A2 PowerPC
processors.

All the racks have 8 IO nodes which
connect the BGQ racks to the shared
GPFS storage over Infiniband.

The minimum block size which can be
booted for a job is therefore 1,024/8
nodes, or 128 nodes.

Mesh Multiplication

Most mesh generators are serial and thus memory-limited
A way around to generate extremely large meshes is to build

meshes from existing coarse ones and globally refine each cell
This process might be repeated several times
Developed by Ales Ronovsky (VSB, PRACE)

Block-Based IO

Use global numbering
Redistribution on n blocks
•  n blocks ≤ n cores
•  Minimum block size may be set to
avoid many small blocks (for some
communication or usage schemes), or to
force 1 block (for I/O with non-parallel
libraries)‏
•  Rank 0 is collecting info from the blocks

Test Case - Configuration

3D lid-driven cavity - fully unstructured mesh (tetras)

Size of the meshes:
MM Level 0 (13 million cells – Current production runs)
MM Level 1 (111 million cells – Current production runs)
MM Level 2 (890 million cells – Production runs in 2015)
MM Level 3 (7.2 billion cells – Production runs in 2016/2017)

Geometric partitioning
using a Space-Filling
Curve approach (Hilbert)

Note
IO tests are performed when the solver performance is still acceptable

If not stated, machine default settings. No striping for Lustre, for instance

Cores Time in Solver

262,144 652.59s

524,288 354.89s

Nodes/Ranks Time in Solver

16384/32 70.124s

32768/32 50.207s
49152/32 43.465s

105B Cell Mesh (MIRA, BGQ)

13B Cell Mesh (MIRA, BGQ)

Mesh generated by Mesh Multiplication

Scalability at Scale (1)

Comparison HECToR – ARCHER

Mesh generated by Mesh Multiplication
Cube meshed with tetra cells

Scalability at Scale (2)

IO HECToR (Lustre)

Comparison IO per Blocks (Ser-IO) and MPI-IO
Comparison Lustre (Cray) / GPFS (IBM BlueGene/Q)

Tube Bundle

812M cells

Block IO: ~same performance on Lustre and GPFS

MPI-IO: 8 to 10 times faster with GPFS

MM – Level 0

There is no mesh
multiplication here

Writing Checkpoint Files

MM – Level 1

Writing Checkpoint Files – Mesh_Output

MM – Level 2

Writing Checkpoint Files – Mesh_Output

One time step only for
the solver.
Timing also involves IOs

MM – Level 3

Writing Mesh_Output

Quick Summary

MPI – IO vs Block IO

Writing Checkpoint Files – Mesh_Output

Cray Huge Pages
Virtual Memory Pages. They can sometimes provide better performance
by reducing the number of TLB misses and by enforcing larger
sequential physical memory inside each page

Effect of Hyperthreading?

•  Tests are performed on
the BGQ

•  More MPI tasks are
used for the same
number of compute
nodes and IO nodes

Writing Mesh_Output

Conclusions

With the current machine/filesystem settings

MPI-IO
ARCHER (Lustre) better for small meshes than larger ones

BlueJoule (GPFS) better for large meshes than smaller ones

MPI-IO vs Block IO
If results on HECToR were comparable, much better obtained with

MPI-IO on ARCHER

Cray HugePages (Lustre)
No clear improvement when using 8MB

Hyperthreading (GPFS)

IO time not affected when using hyperthreading

Perspectives
Lustre System

Using “striping” for better performance for large meshes?

BGAS (Blue Gene Active Storage) System
The Active Storage Project is aimed at:-
-enabling close integration of emerging solid-state storage
technologies with high performance networks and integrated
processing capability
-exploring the application and middleware opportunities presented by
such systems
-anticipating future scalable systems comprised of very dense Storage
Class Memories (SCM) with fully integrated processing and network
capability

Project to test Code_Saturne on the BGAS System

(Collaboration between STFC (the Hartree Centre) and IBM)

THANK YOU FOR YOUR
ATTENTION

