Python on ARCHER

Nick Johnson
CSE Team, EPCC

Overview

* Motivation
* What is available & where

* Running on ARCHER:
on the login nodes
on the PP/serial nodes
on the compute nodes

* Adding your own modules
* “Gotchas”

* Scaling performance

* Where to get more help

* Questions

Motivation

Why would you want to run an interpreted language like
Python on a supercomputer like ARCHER?

You could do it all in C or Fortran
Portability
Ease of coding + testing

Quick data analysis

Pre and Post processing of data sets, input files

Disclaimer

* I'll be using an unreleased module in this talk to illustrate
some points which | don’t recommend

* It's python/2.7.6-experimental

* Eventually, these will become part of the python/2.7.6 module
so you will have access to them.

Running Python on ARCHER

* There are three places to run Python on ARCHER:
Login nodes
PP/serial nodes
Compute nodes

* There are, just to add to the confusion, three version of
Python available on ARCHER

2.6.8
2.7.6 (default)
3.3.3

* 2.7.6 (the default) is automatically loaded as a module when
you login.

Login nodes

* You can run any of the versions of Python but we recommend
the default and only using the login node if it’s a tiny job.

eslogin@v6:> python helloworld.py
Hello, World

* Acceptable

eslogin@v6:> python monster_data analysis.py
Resl = 10
Res2 = 11

* Not acceptable — you will likely get an email about it from the
helpdesk!

PP nodes/serial nodes

* The best place to run your large analysis codes
* Surely you just do as you would do for any other PP job?

njohnsol@eslogin@®6:~/work> cat serialjob.pbs

#!/bin/bash -login

#PBS -1 select=serial=true:ncpus=1

#PBS -1 walltime=00:01:00#PBS -A z0@1l-cse

Make sure any symbolic links are resolved to absolute path

export PBS_O WORKDIR=$(readlink -f $PBS_O WORKDIR)
Change to the directory that the job was submitted from

cd $PBS_O_WORKDIR
python helloworld.py

What just happened?

* The system version of python (2.6.8) has numpy installed
* The default version does not (but will soon)

* We didn’t load any modules in our job script so we used the
system python (/usr/bin/python)

* Always check by inserting which python into your job script
to be sure.

* The system python might change version with a CNL upgrade,
numpy might cease to be available.

* | recommend not using it.
* Explicitly load the default module in your script

Interactive jobs

* If you want to run interactive python but are worried about
saturating a login node, use an interactive job on the PP
nodes:

gsub -IV1 select=serial=true:ncpus=1,walltime=1:0:0 -A
budget

* The same caveats about versions apply

Compute nodes

* Running python on the compute nodes is entirely possible

* But, if you only have a single process code, it might be a waste
of resources...

* Python is inherently single process and current threading
doesn’t help much other than for process control.

StackOverflow has many, many articles on parallelism in Python
for the curious.

* Parallelism is possible on the compute (but not yet released
to users).

* The trick is to use mpi4py which allows python processes to
communicate using MPI.

What's happening

* aprun starts N seperate processes, each of which is running an
instance of the python interpreter

* They communicate using MPI calls which are passed toa C
library which pass them down the stack, as with any other MPI

code.

* There is no magic involved — you can use other modules with
each of these processes, numpy for example...

Compiling & installing

* You are free to compile and install your own modules
* Ifit’s a pure python module (no C code) there will be no problem.
* If compilation is required, you should use PrgEnv-gnu

* | recommend using the setup.py that comes with the module:
python setup.py build options
python setup.py install -home=<dir>

* If you want to use your module on the compute nodes, you MUST
install to /work

* Don’t forget to set PYTHONPATH in your jobscript AND load the
default module if you built against that.

* Don’t forget that the CSE team are here to help you, for free!
If you are struggling, get in touch via the helpdesk.

Gotchas

* Things to watch out for when using Python on ARCHER:

The wrong Python — jobs submitted directly to the back-end (PP
or compute nodes) via gsub will not have the default python
loaded or have the correct PYTHONPATH set.

#!/usr/bin/python
This will load the system python and potentially cause pain
Either change to #!/usr/bin/env python
Or just comment it out and run as a script

Cannot find modules

If you have compiled and installed yourself, make sure you have
correctly set PYTHONPATH

As best practice, echo it at the start of your jobscript along with the
output of which python

Scaling

* If your python code loads a lot of dynamic modules, ie shared
libraries that you call into, you will notice horrible scaling
performance.

Really horrible
* The problem is that every process (say 1056) is trying to load
the same file from the file-system and this bottlenecks, badly.
* There are some solutions being trialled by the CSE team, but
they are not ready yet.
If this is a pressing need for you, please get in touch

Scaling times

1200

1000

800

600

400

200

Import time (s)

/

/

-

16

32

64

128

256

512

1024

2048

