
1 

 
 

Advanced OpenMP 

Lecture 12: Tips, tricks and gotchas 

Directives 

•  Mistyping the sentinel (e.g. !OMP or #pragma opm ) 
typically raises no error message.  
–  Be careful! 

•   The macro _OPENMP is defined if code is compiled with the 
OpenMP switch.  

•  You can use this to conditionally compile code so that it 
works with and without OpenMP enabled. 

•  If you want to link dummy OpenMP library routines into 
sequential code, there is code in the standard you can copy 
(Appendix B) 



2 

Parallel regions 

•  The overhead of executing a parallel region is typically in the 
10-100 microseconds range 
–  depends on compiler, hardware, no. of threads 

•  You can use the EPCC OpenMP microbenchmarks to do 
detailed measurements of overheads on your system. 

•  Download from www.epcc.ed.ac.uk/research/computing/
performance-characterisation-and-benchmarking 

•  The sequential execution time of a section of code has to be 
several times this to make it worthwhile parallelising.  

•  If a code section is only sometimes long enough, use the if 
clause to decide at runtime whether to go parallel or not. 
–  Overhead on one thread is typically much smaller  (<1µs). 

Is my loop parallelisable?  

•  Quick and dirty test for whether the iterations of a loop are 
independent. 

•  Run the loop in reverse order!! 

•  Not infallible, but counterexamples are quite hard to 
construct.  



3 

Loops and nowait 

#pragma omp parallel 

{ 

#pragma omp for schedule(static) nowait 

   for(i=0;i<N;i++){ 

     a[i] = .... 

   } 

#pragma omp for schedule(static) 

   for(i=0;i<N;i++){ 

     ... = a[i] 

   } 

} 

•  This is safe so long as 
the number of 
iterations in the two 
loops and the 
schedules are the 
same (must be static, 
but you can specify a 
chunksize) 

•  Guaranteed to get 
same mapping of 
iterations to threads. 

Default schedule 

•  Note that the default schedule for loops with no schedule 
clause is implementation defined. 

•  Doesn’t have to be STATIC. 

•  In practice, in all implementations I know of, it is.  

•  Nevertheless you should not rely on this!  



4 

Tuning the chunksize 

•  Tuning the chunksize for static or dynamic schedules can be 
tricky because the optimal chunksize can depend quite 
strongly on the number of threads. 

•  It’s often more robust to tune the number of chunks per 
thread and derive the chunksize from that. 
–  chunksize expression does not have to be a compile-time constant 

SINGLE or MASTER? 

•  Both constructs cause a code block to be executed by one 
thread only, while the others skip it: which should you use?  

•  MASTER has lower overhead (it’s just a test, whereas 
SINGLE requires some synchronisation). 

•  But beware that MASTER has no implied barrier!  

•  If you expect some threads to arrive before others, use 
SINGLE.  



5 

9 

Fortran 90 array syntax 

•  Can’t use loop directives directly to parallelise Fortran 90 array syntax 

•  WORKSHARE is a worksharing directive (!) which allows parallelisation 
of Fortran 90 array operations, WHERE and FORALL constructs.  

•  Syntax: 

!$OMP WORKSHARE 

        block 

!$OMP END WORKSHARE [NOWAIT] 

10 

Workshare directive (cont.) 

•  Simple example 

REAL A(100,200), B(100,200), C(100,200) 
... 
!$OMP PARALLEL 
!$OMP WORKSHARE 
       A=B+C 
!$OMP END WORKSHARE 
!$OMP END PARALLEL 

•  N.B. No schedule clause: distribution of work units to threads 
is entirely up to the compiler!  

•  If the compiler doesn’t do a good job, you may need to 
expose a loop explicitly. 

•  There is a synchronisation point at the end of the workshare: 
all threads must finish their work before any thread can 
proceed 



6 

11 

Workshare directive (cont.) 

•  Can also contain array intrinsic functions,  WHERE and FORALL 
constructs, scalar assignment to shared variables, ATOMIC and 
CRITICAL directives. 

•  No branches in or out of block. 

•  No function calls except array intrinsics and those declared 
ELEMENTAL.  

•  Combined directive: 

!$OMP PARALLEL WORKSHARE 

        block 

!$OMP END PARALLEL WORKSHARE  

12 

Workshare directive (cont.) 

•  Example: 
 

!$OMP PARALLEL WORKSHARE 

      A = B + C  

      WHERE (D .ne. 0) E = 1/D 

!$OMP ATOMIC 

      t = t + SUM(F)  

      FORALL (i=1:n, X(i)=0) X(i)= 1 

!$OMP END PARALLEL WORKSHARE 



7 

Data sharing attributes 

•  Don’t forget that private variables are uninitialised on entry to 
parallel regions!  

•  Can use firstprivate, but it’s more likely to be an error. 

•  Always, always use default(none) 
–  I mean always. No exceptions!  
–  Everybody suffers from “variable blindness”.   

Spot the bug!  

#pragma omp parallel for shared (a,b,c,d,N,M)\ 

private(temp) 

   for(i=0;i<N;i++){ 

 for (j=0;j<M;j++){ 

       temp = b[i]*c[j]; 

       a[i][j] = temp * temp + d[i];  

     } 

   } 

•  May always get the right result with sufficient compiler 
optimisation!    



8 

Huge long loops 

•  What should I do in this situation?  

do i=1,n  

..... several pages of code referencing 100+       

      variables 

end do 

 

•  Determining the correct scope (private/shared/reduction) for 
all those variables is tedious, error prone and difficult to test 
adequately.  

 

•  Refactor sequential code to 

do i=1,n  

   call loopbody(......) 

end do 

•  Make all loop temporary variables local to loopbody 

•  Pass the rest through argument list 

•  Much easier to test for correctness!  

•  Then parallelise...... 



9 

Reduction race trap 

#pragma omp parallel shared(sum, b)  

{ 

  sum = 0.0;  

#pragma omp for reduction(+:sum)  

  for(i=0;i<n:i++) { 

    sum += b[i]; 

  } 

.... = sum;  

} 

•  There is a race between the initialisation of sum and the 
updates to it at the end of the loop.  

   

Private global variables 

double foo;  

 

#pragma omp parallel \ 

private(foo) 

{ 

  foo = .... 

  a = somefunc();  

}  

extern double foo;  

 

double sumfunc(void){ 

 

   ... = foo;  

 

} 

•  Unspecified whether the reference to foo in somefunc is to the 
original storage or the private copy.  

•  Unportable and therefore unusable! 

•  If you want access to the private copy, pass it through the 
argument list.   



10 

Missing SAVE or static 

•  Compiling my sequential code with the OpenMP flag caused 
it to break: what happened?  

•  You may have a bug in your code which is assuming that the 
contents of a local variable are preserved between function 
calls.  
–  compiling with OpenMP flag forces all local variables to be stack 

allocated and not heap allocated 
–  might also cause stack overflow 

•  Need to use SAVE or static correctly 
–  but these variables are then shared by default 
–  may need to make them threadprivate 
–  “first time through” code may need refactoring (e.g. execute it before 

the parallel region) 

Critical and atomic 

•  You can’t protect updates to shared variables in one place 
with atomic and another with critical, if they might contend. 

•  No mutual exclusion between these 
–  critical protects code, atomic protects memory locations. 

 

#pragma omp parallel  

{  

#pragma omp critical  

  a+=2;  

#pragma omp atomic  

  a+=3;  

}  



11 

Allocating storage based on number of threads 

•  Sometimes you want to allocate some storage whose size is 
determined by the number of threads.  
–  but how do you know how many threads the next parallel region will 

use?  

•  Can call omp_get_max_threads() which returns the 
value of the  nthreads-var ICV. The number of threads used 
for the next parallel region will not exceed this 
–  except if a num_threads clause is used. 

•  Note that the implementation can always deliver fewer 
threads than this value 
–  if your code depends on there actually being a certain number of 

threads, you should always call omp_get_num_threads() to 
check 

Stack size 

•  If you have large private data structures, it is possible to run 
out of stack space.  

•  The size of thread stack apart from the master thread can be 
controlled by the OMP_STACKSIZE environment variable. 

•  The size of the master thread’s stack is controlled in the 
same way as for sequential program (e.g. using ulimit ). 
–  OpenMP can’t control this as by the time the runtime is called it’s too 

late!  



12 

Environment for performance 

•  There are some environment variables you should set to 
maximise performance. 
–  don’t rely on the defaults for these!  

OMP_WAIT_POLICY=active 

•  Encourages idle threads to spin rather than sleep 

OMP_DYNAMIC=false 

•  Don’t let the runtime deliver fewer threads than you asked for 

OMP_PROC_BIND=true 

•  Prevents threads migrating between cores 

Debugging tools 

•  Traditional debuggers such as DDT or Totalview have 
support for OpenMP 

•  This is good, but they are not much help for tracking down 
race conditions 
–  debugger changes the timing of event on different threads 

•  Race detection tools work in a different way 
–  capture all the memory accesses during a run, then analyse this data 

for races which might have occured. 

•  Intel Inspector XE 

•  Oracle Solaris Studio (collect and discover tools, also works 
on Linix) 



13 

Profilers 

•  Standard profilers (gprof, IDE profilers) can be confusing  
–  they typically accumulate the time spent in functions across all 

threads. 

•  You can get a lot out of using timers ( omp_get_wtime()) 

•  Add  timers round every parallel region, and round the whole 
code. 
–  work out which parallel regions have the worst speedup 
–  don’t assume the time spent outside parallel regions is independent of 

the number of threads. 

Performance tools 

•  Vampir/Vampirtrace  
–  timeline traces can be very useful for visualising load balance 

•  Intel Vtune 

•  Scalasca 
–  breaks down overheads into different categories 

•  Rogue Wave Threadspotter 
–  statistical memory profiler 
–  uses tracing and simulation 
–  very good for finding cache/memory problems, including false 

sharing.  


