ARCHER Tips and Tricks

A few notes from the CSE team

Reusing this material

©0Ee

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the

material under the following terms: You must give appropriate credit, provide a link to the

license and indicate if changes were made. If you adapt or build on the material you must
distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their permission
before reusing these images.

epcc

Outline

Using Intel MKL

Impact of HyperThreads

Showing process/thread placement

Performance analysis: hardware counters on ARCHER
Debugging: Disabling autotuning in Cray BLAS
Enabling and using ATP

epce

-
Intel MKL

MKL can be used as an alterantive for LibSci
We have seen cases where either is better
Worth experimenting

Not interfaced through modules
Linking using GNU

-L$(MKLROOT)/1ib/intel64/ -W1,--start-group -1lmkl gnu thread \
-1mkl gf 1p64 -1lmkl core -W1l,--end-group -1dl

Linking using Intel

-L$(MKLROOT)/1ib/intel64/ -W1l,--start-group -1mkl intel 1p64 \
-1mkl core -1mkl sequential -W1l,--end-group -1dl

epcc

-
Intel MKL (cont.)

The link line is reasonably complicated.
Use the MKL Link Line Advisor:

http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor

For ARCHER select:
Product: Intel Composer XE 2013 SP1
OS: Linux
Architecture: Intel(R) 64
Linking: Static
Interface Layer: LP64 (32-bit Integer)
(MPI: MPICH2 if required)

epcc

qfo 7
2 %
)

<

N
Impact of HyperThreads

HyperThreads allow up to 2 processes/threads to run
concurrently on a single physical core

Managed in hardware so context switch is fast
Use CPU resource while one thread is stalled

Very program dependent
Even a small improvement is worth it (as it is free)
Worth testing if it is useful for your program

aprun syntax (2 nodes):

aprun -j 2 -n 96 -N 48 ..

epce @

Hyperthreading example performance

- XC30: Sandy Bridge (8 cores), fully populated nodes
- VASP - NAMD

140! Bl Single Stream

500" Bl Single Stream
B Double Stream

B Double Stream

120

807

100! 350
E 250"
60| 200}
40+ 150+
100/

2
. | "

ob

The number of nodes

Time (s)

o

The number of nodes

Effects of Hyper-Threading on the NERSC workload on Edison
http://www.nersc.gov/assets/CUG13HTpaper.pdf

epcc

e
Show Process/Thread Placement

Process/thread placement can have a large impact on
performance

Particularly when underpopulating nodes or running mixed-mode
(MPI1/OpenMP) code.

Add the following lines to your job submission script:

export MPICH CPUMASK DISPLAY=1
export MPICH RANK REORDER DISPLAY=1

Q/ A7/
e &
F' [~

)
<

epce

Placement (cont.)

[PE_©]: MPI rank order: Using default aprun rank ordering.
[PE_©]: rank @ is on nide2421
[PE_ ©]: rank 1 is on nide2421
[PE_O]: rank 2 is on nid@2421

[PE_©]: rank 24 is on nid@2505

[PE_©]: rank 25 is on nid@2505
[PE_©]: rank 26 is on nid@2505

epcc

Placement (cont.)

[PE_©]: cpumask set to 1 cpu on nid@2421, cpumask =
0000000000000000000000VPVVLVVVVCVVVVRRRRVA1

[PE_34]: cpumask set to 1 cpu on nid@2505, cpumask
00000000100V

[PE_33]: cpumask set to 1 cpu on nid@2505, cpumask
0000000000000000000000VVVVVVVVVVLVV1000000000

[PE_35]: cpumask set to 1 cpu on nid@2505, cpumask =
0000V VVVVVVVVVVVRAV100VRRRRRLLO

[PE_47]: cpumask set to 1 cpu on nid@2505, cpumask =
0000000000000000000VPVV1000000VVVVVRVRVVVLO

Q/
<
~
o]
<

(©)=roher SPCC

e
Hardware Counters on ARCHER

CrayPAT allows you to monitor performance at the
hardware level

Specify set of performance counters using the
PAT _RT PERFCTR environment variable in script that is
running instrumented code:

PAT RT_PERFCTR=1

(Group = 1 shows a summary with floating-point and
cache metrics.)

epce

qfo N
2 %
O
<

PERF_COUNT_HW_CACHE_L1D:ACCESS 458227922309

PERF_COUNT_HW_CACHE_L1D:PREFETCH 7837418131
PERF_COUNT_HW_CACHE_L1D:MISS 25703134212
CPU_CLK_UNHALTED:THREAD_P 884128952294
CPU_CLK_UNHALTED:REF_P 29852948968
DTLB_LOAD_MISSES:MISS_CAUSES_A WALK 219955467
DTLB_STORE_MISSES :MISS_CAUSES_A WALK 54655340
L2_RQSTS:ALL_DEMAND_DATA_RD 17968418083
L2_RQSTS:DEMAND_DATA_RD_HIT 14820163740
User time (approx) 304.533 secs 822542437366
CPU_CLK 2.962GHz

TLB utilization 1790.78 refs/miss 3.498
D1 cache hit,miss ratios 94.8% hits 5.2%
D1 cache utilization (misses) 19.13 refs/miss 2.392
D2 cache hit,miss ratio 87.8% hits 12.2%
D1+D2 cache hit,miss ratio 99.4% hits 0.6%
D1+D2 cache utilization 156.20 refs/miss 19.525
D2 to D1 bandwidth 3601.274MB/sec 1149978757281

‘ archenr

epCcc

cycles

avg uses
misses
avg hits
misses
misses
avg hits
bytes

N
Disable Cray BLAS autotuning

If you are debugging and use the Cray LibSci library then
you may want to disable autotuning.
Ensures autotuning is not causing the error.

Add:

CRAYBLAS AUTOTUNING _OFF=1

to your job scripts.

epce

-
Using ATP

ATP (Abnormal Termination Processing) catches dying
applications and produces a merged stack backtrace

Useful for getting more information on crashes
Set:

ATP_ENABLED=1

In your job submission script.
There is no need to recompile to use ATP

epce

qfo N
2 %
O

<

Using ATP (cont.)

When your program crashes, ATP will:
Produce a stack trace of the first failing process

Produce a visualisation of every processes stack trace
Generate a selection of relevant core files

Visualise the merged stack trace using statview:

module add stat
statview atpMergedBT.dot

Very simple way to start the debugging process

epcc

qfo 7
2 %
)
<

statview (thanks to Cray)

——

STATview
File Edit View Help

B 9 T e ¢ Tlessf

atpMergedBT.dot |
32:[0-31] [2:[0,16] 32:[0-31]

start_thread [Fault Summary]

D:[0,16] \32:[&31]

funcA | |0 et | [SIGSEGV(11)]

GNI_WaitEmorEvents

D:[0,16]

-Command History——

