ARCHER Tips and Tricks

A few notes from the CSE team
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Intel MKL

MKL can be used as an alterantive for LibSci
We have seen cases where either is better
Worth experimenting

Not interfaced through modules
Linking using GNU

-L$(MKLROOT)/1ib/intel64/ -W1,--start-group -1lmkl gnu thread \
-1mkl gf 1p64 -1lmkl core -W1l,--end-group -1dl

Linking using Intel

-L$(MKLROOT)/1ib/intel64/ -W1l,--start-group -1mkl intel 1p64 \
-1mkl core -1mkl sequential -W1l,--end-group -1dl

epcc




-
Intel MKL (cont.)

The link line is reasonably complicated.
Use the MKL Link Line Advisor:

http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor

For ARCHER select:
Product: Intel Composer XE 2013 SP1
OS: Linux
Architecture: Intel(R) 64
Linking: Static
Interface Layer: LP64 (32-bit Integer)
(MPI: MPICH2 if required)
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Impact of HyperThreads

HyperThreads allow up to 2 processes/threads to run
concurrently on a single physical core

Managed in hardware so context switch is fast
Use CPU resource while one thread is stalled

Very program dependent
Even a small improvement is worth it (as it is free)
Worth testing if it is useful for your program

aprun syntax (2 nodes):

aprun -j 2 -n 96 -N 48 ..
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Hyperthreading example performance

- XC30: Sandy Bridge (8 cores), fully populated nodes
- VASP - NAMD
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Effects of Hyper-Threading on the NERSC workload on Edison
http://www.nersc.gov/assets/CUG13HTpaper.pdf
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Show Process/Thread Placement

Process/thread placement can have a large impact on
performance

Particularly when underpopulating nodes or running mixed-mode
(MPI1/OpenMP) code.

Add the following lines to your job submission script:

export MPICH CPUMASK DISPLAY=1
export MPICH RANK REORDER DISPLAY=1
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Placement (cont.)

[PE_©]: MPI rank order: Using default aprun rank ordering.
[PE_©]: rank @ is on nide2421
[PE_ ©]: rank 1 is on nide2421
[PE_O]: rank 2 is on nid@2421

[PE_©]: rank 24 is on nid@2505

[PE_©]: rank 25 is on nid@2505
[PE_©]: rank 26 is on nid@2505
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Placement (cont.)

[PE_©]: cpumask set to 1 cpu on nid@2421, cpumask =
0000000000000000000000VPVVLVVVVCVVVVRRRRVA1

[PE_34]: cpumask set to 1 cpu on nid@2505, cpumask
00000000100V

[PE_33]: cpumask set to 1 cpu on nid@2505, cpumask
0000000000000000000000VVVVVVVVVVLVV1000000000

[PE_35]: cpumask set to 1 cpu on nid@2505, cpumask =
0000V VVVVVVVVVVVRAV100VRRRRRLLO

[PE_47]: cpumask set to 1 cpu on nid@2505, cpumask =
0000000000000000000VPVV1000000VVVVVRVRVVVLO
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Hardware Counters on ARCHER

CrayPAT allows you to monitor performance at the
hardware level

Specify set of performance counters using the
PAT _RT PERFCTR environment variable in script that is
running instrumented code:

PAT RT_PERFCTR=1

(Group = 1 shows a summary with floating-point and
cache metrics.)
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PERF_COUNT_HW_CACHE_L1D:ACCESS 458227922309

PERF_COUNT_HW_CACHE_L1D:PREFETCH 7837418131
PERF_COUNT_HW_CACHE_L1D:MISS 25703134212
CPU_CLK_UNHALTED:THREAD_P 884128952294
CPU_CLK_UNHALTED:REF_P 29852948968
DTLB_LOAD_MISSES:MISS_CAUSES_A WALK 219955467
DTLB_STORE_MISSES :MISS_CAUSES_A WALK 54655340
L2_RQSTS:ALL_DEMAND_DATA_RD 17968418083
L2_RQSTS:DEMAND_DATA_RD_HIT 14820163740
User time (approx) 304.533 secs 822542437366
CPU_CLK 2.962GHz

TLB utilization 1790.78 refs/miss 3.498
D1 cache hit,miss ratios 94.8% hits 5.2%
D1 cache utilization (misses) 19.13 refs/miss 2.392
D2 cache hit,miss ratio 87.8% hits 12.2%
D1+D2 cache hit,miss ratio 99.4% hits 0.6%
D1+D2 cache utilization 156.20 refs/miss 19.525
D2 to D1 bandwidth 3601.274MB/sec 1149978757281

‘ archenr
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Disable Cray BLAS autotuning

If you are debugging and use the Cray LibSci library then
you may want to disable autotuning.
Ensures autotuning is not causing the error.

Add:

CRAYBLAS AUTOTUNING _OFF=1

to your job scripts.
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Using ATP

ATP (Abnormal Termination Processing) catches dying
applications and produces a merged stack backtrace

Useful for getting more information on crashes
Set:

ATP_ENABLED=1

In your job submission script.
There is no need to recompile to use ATP
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Using ATP (cont.)

When your program crashes, ATP will:
Produce a stack trace of the first failing process

Produce a visualisation of every processes stack trace
Generate a selection of relevant core files

Visualise the merged stack trace using statview:

module add stat
statview atpMergedBT.dot

Very simple way to start the debugging process
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statview (thanks to Cray)

——

STATview
File Edit View Help
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atpMergedBT.dot |
32:[0-31] [2:[0,16] 32:[0-31]

start_thread [Fault Summary]

D:[0,16] \32:[&31]

funcA | |0 et | [SIGSEGV(11)]

GNI_WaitEmorEvents

D:[0,16]
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