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Scientific Computing Requirements

• Generate data

• Usually from simulation on HPC facilities

• (Also from experiment!)

• Process data

• Generate appropriate results from simulation data

• Visualise results

• To understand the significance of our work and gain scientific 
understanding

• Communicate results

• Through publications, presentations, web, etc.



Why Python?

• Rich set of scientific computing functionality

• Powerful numerical and scientific libraries

• Rich plotting functionality

• Excellent support for interfacing to existing Fortran/C/C++ code

• Interactive and scripting interface

• Simple to learn and code is very readable

• Scientists are usually self-taught programmers

• Syntax enables clarity in algorithms (in a similar way to Fortran)

• Free and Open Source

• Widely-available so code is portable



Useful packages

• IPython
• Advanced Python shell

• Matplotlib
• Rich featured plotting (2D and 3D)

• Numpy
• Tools for manipulating numerical arrays efficiently

• Scipy
• High-level scientific routines for common algorithms: optimisation, 

Fourier transform, linear algebra and others

• f2py
• Interface external code with Python

• mpi4py
• Message passing parallel programming



Python: Interactive and Programs

• Python can be used as an interactive tool

• For example, when producing simple plots to quickly analyse data

• The IPython shell adds additional useful functionality

• It can also be used for writing programs

• These can range from quick-and-dirty single use scripts to full 
programs

• Can interface to C/C++ and Fortran code



IPython Shell

• IPython extends the standard Python shell with a number 

of useful things, including:

• Tab completion

• Interactive help

• Built-in debugging and profiling

• Pasting of code snippets from websites

• Saving of sessions

• quickref command gives a summary of capabilities
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Python origins

• Created early 1990s (Guido van Rossum, CWI)

• Driven by desire to provide more programmer-friendly 

alternative to C to speed up application development

• Inspired by an earlier interactive programming 

environment and language (ABC)

• Not created specifically for scientific computing (unlike 

e.g. Fortran)



Python now

• Most popular first taught programming language at top 39 

US computer science departments

• Used by Youtube, Dropbox, Google, Industrial Light & 

Magic, Quant Finance, …

• Version 3.x breaks backwards compatibility with 2.x

• 2.x still most widely used, including in this course



In natural sciences & engineering?

• Used mainly:

• As a multipurpose workflow environment for data analysis and 
visualisation

• As “glue”, i.e. interface code, to heavy numerical kernels written in 
a compiled language like C/C++ or Fortran (e.g. Fluidity, ASE)

• For rapid prototyping of algorithms

• For non-HPC simulations

• Though performance continues to improve and there are 

some 100% Python codes (e.g. GPAW), these are still not 

widely used for heavy numerics.



Python characteristics

• Python is a high-level language (compared e.g. to C), 
• Simple syntax, more easily readable code and shorter programs

but

• Sacrifice some performance due to abstraction overheads

• Development time considered more valuable than compute time

• Python is a fully-featured general purpose programming 
language (like C, C++, Fortran, Java, etc.)

• Python supports (but does not enforce) different programming 
styles, e.g. object-oriented

• Python is open source



The Python interpreter

• Python code is not generally compiled into a standalone 
executable, but executed by the Python interpreter, python

• Python code contained in a script file (ending in .py) can be 

execute by the interpreter as follows:

aproeme$ cat hello.py

print(“Hello World”)

aproeme$ python hello.py

Hello World



Interactive Python

• If not supplied with an input script file, the Python 

interpreter runs as an interactive Python runtime 

environment (a Python shell session)

aproeme$ python



Interactive Python

• If not supplied with an input script file, the Python 

interpreter runs as an interactive Python runtime 

environment (a Python shell session)

aproeme$ python

Python 2.7.7 |Anaconda 2.0.1 (x86_64)| (default, Jun  2 2014, 

12:48:16) 

[GCC 4.0.1 (Apple Inc. build 5493)] on darwin

Type "help", "copyright", "credits" or "license" for more 

information.

Anaconda is brought to you by Continuum Analytics.

>>>



Interactive Python

• If not supplied with an input script file, the Python 

interpreter runs as an interactive Python runtime 

environment (a Python shell session)

aproeme$ python

Python 2.7.7 |Anaconda 2.0.1 (x86_64)| (default, Jun  2 2014, 

12:48:16) 

[GCC 4.0.1 (Apple Inc. build 5493)] on darwin

Type "help", "copyright", "credits" or "license" for more 

information.

Anaconda is brought to you by Continuum Analytics.

>>> print(“Hello World”)



Interactive Python

• If not supplied with an input script file, the Python 

interpreter runs as an interactive Python runtime 

environment (a Python shell session)

aproeme$ python

Python 2.7.7 |Anaconda 2.0.1 (x86_64)| (default, Jun  2 2014, 

12:48:16) 

[GCC 4.0.1 (Apple Inc. build 5493)] on darwin

Type "help", "copyright", "credits" or "license" for more 

information.

Anaconda is brought to you by Continuum Analytics.

>>> print(“Hello World”)

Hello World 



Interactive Python

• Python shell lets you explore Python functionality directly 
without needing to compile your code

• This is useful for incremental / progressive code development 
and rapid prototyping

• In case of any errors, debugging (TraceBack) information is 
provided within the Python shell (which usually does not simply 
crash)

• Once you have worked out how to get Python to do what you 
want it to, save the code as a Python script (.py file)



Interactive Python vs Matlab et al

• The experience of using interactive Python to work, 

especially iPython, is similar to using other scripting 

languages e.g. Matlab, Mathematica, Maple, R, etc.

• As well as having a good range of scientific libraries 

Python is more easily extendable

• As popularity grows more and more packages become 

available, Python becomes the preferred workflow shell to 

tie everything together



Data types

• Variables in Python are dynamically typed

• i.e. don’t specify explicitly whether int, string, etc.

• Type is determined based on format of assigned value or other 
variables involved in calculation

X = 1.0

my_name = Arno

Y = my_name + X 
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Numerical data types

• Integers

• Floats

• Complex numbers

• Basic operations

• + and –

• *, / and **

• Implicit type conversions

• Be careful with integer division!

x = 4

y = 6.0

z = 1.4 + 4.2j

>>> 4.0 + 5 – 2

7.0

>>> 2.0**2 / 2.0*(4.2-2j)

(8.4-4j)

>>> 2/5

0

>>> 2./5

0.4



String

• Strings are enclosed by “ or '
• Multiline strings can be defined with three double quotes 

s1 = “very simple string” 

s2 = 'same simple string' 

s3 = “this isn't so simple string” 

s4 = 'is this “complex” string?’

s5 = “””This is a long string 

expanding to multiple lines,

so it is enclosed by three “'s””” 

+ and * operators with strings: 
>>> "Strings can be " + "combined" 

'Strings can be combined'

>>> "Repeat! " * 3

'Repeat! Repeat! Repeat! 



Data structures

• Lists

• Tuples

• No arrays! (wait for NumPy)



Lists

• Python lists are dynamic arrays 

• List items are indexed (index starts from 0) 

• List item can be any Python object, items can be of 

different type 

• New items can be added to any place in the list 

• Items can be removed from any place in the list 



Lists

• Defining lists 
>>> l1 = [3, “egg”, 6.2, 7] 

>>> l2 = [12, [4, 5], 13, 1] 

• Accessing list elements 
>>> l1[0] 

3

>>> l2[1]

[4, 5]

>>> l1[-1]

7 

• Modifying list items 
>>> 1[-2] = 4 

>>> l1

[3, 'egg', 4, 7] 



Lists
• Adding items to list 

>>> l1 = [9, 8, 7, 6]

>>> l1.append(11) 

>>> l1
[9, 8, 7, 6, 11] 

>>> l1.insert(1,16)

>>> l1
[9, 16, 8, 7, 6, 11] 

>>> l2 = [5, 4] 

>>> l1.extend(l2) 

>>> l1 

[9, 16, 8, 7, 6, 11, 5, 4] 

• + and * operators with lists: 

>>> [1, 2, 3] + [4, 5, 6]

[1, 2, 3, 4, 5, 6]
>>> [1, 2, 3] * 2
[1, 2, 3, 1, 2, 3] 



Lists

• It is possible to access slices of lists 
• >>> l1 = [0, 1, 2, 3, 4, 5] 

• >>> l1[0:2]
[0, 1]
>>> l1[:2] 

• [0, 1]
>>> l1[3:]
[3, 4, 5]
>>> l1[0:6:2] 

• [0, 2, 4]
>>> l1[::-1]
[5, 4, 3, 2, 1, 0] 

• Removing list items 
>>> second = l1.pop(2) 

>>> l1
[0, 1, 3, 4, 5]
>>> second 

2 



Tuples

• A tuple is number of comma-separated values, e.g.:
• >>> t = ‘a’,2,3

• t[0]= bla

• Traceback (most recent call last):

• File “<stdin>”, line 1, in <module>

• TypeError: ‘tuple’ object does not support item assignment



Variables

• Python variables are references 
>>> l1 = [1,2,3,4] 

>>> l2 = l1 

• l1 and l2 are references to the same list

• Modifying l2 changes also l1! 
• >>> l2[0] = 0 

• >>> l1

[0, 2, 3, 4] 

• Copy can be made by slicing the whole list 
• >>> l3 = l1[:] 

• >>> l3[-1] = 66

• >>> l1
[0, 2, 3, 4] 

• >>> l3
[0, 2, 3, 66] 



Objects

• Object is a software bundle of data (=variables) and 

related methods 

• Data can be accessed directly or only via the methods 

(=functions) of the object 

• In Python, everything is an object 

• Methods of object are called with the syntax 

• obj.method

• Methods can modify the data of object or return new 

objects 



Standard Library 

• Standard library includes:

• OS interface

• Basic Maths functions & random number generator

• Performance measurement

• Output formatting

• Data compression

• Internet access

• Simple multithreading

• Logging



Misc. 

• Third party Python packages (modules) are loaded with

• import modulename

• Code blocks are indented

• Documentation:

• https://docs.python.org/2.7/

• http://scipy-lectures.github.io/
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NumPy

• Pure Python provides lists, but not arrays

• Lists are slow for many numerical algorithms

• NumPy package provides: 

• a multidimensional array data type for Python

• linear algebra operations and random number generators

• All elements of a NumPy array have the same type



Creating NumPy arrays

• From a list
>>> import numpy as np

>>> a = np.array((1, 2, 3, 4), float) 

>>> a

array([ 1., 2., 3., 4.])

>>> list1 = [[1, 2, 3], [4,5,6]]

>>> mat = np.array(list1, complex) 

>>> mat

array([[ 1.+0.j, 2.+0.j, 3.+0.j], 

[ 4.+0.j, 5.+0.j, 6.+0.j]]) 

>>> mat.shape

(2, 3)

>>> mat.size

6 



Creating NumPy arrays

• Using NumPy functions:
>>> import numpy as np

>>> a = np.arange(10)

>>> a

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) 

>>> b = np.linspace(-4.5, 4.5, 5) 

>>> b 

array([-4.5 , -2.25, 0. , 2.25, 4.5 ]) 

>>> c = np.zeros((4, 6), float)

>>> c.shape

(4, 6) 

>>> d = np.ones((2, 4))

>>> d

array([[ 1., 1., 1., 1.], 

[ 1., 1., 1., 1.]]) 



Indexing and slicing arrays

• Simple indexing
>>> mat = np.array([[1, 2, 3], [4, 5, 6]]) 

>>> mat[0,2]
3
>>> mat[1,-2] 

>>> 5 

• Slicing is possible over all dimensions
>>> a = np.arange(10) 

>>> a[1:7:2]
array([1, 3, 5])
>>> a = np.zeros((4, 4)) 

>>> a[1:3, 1:3] = 2.0 

>>> a 

array([[ 0., 0., 0., 0.], 

[ 0., 2., 2., 0.],
[ 0., 2., 2., 0.], 

[ 0., 0., 0., 0.]]) 



Views and copies of arrays 

• Simple assignment creates references to arrays 

• Slicing creates “views” to the arrays

• Use copy() for real copying of arrays 

a = np.arange(10) 

b = a # reference, changing values in b changes a

b = a.copy() # true copy 

c = a[1:4] # view, changing c changes elements [1:4] of a 

c = a[1:4].copy() # true copy of subarray



Array manipulation

• reshape : change the shape of array 
>>> mat = np.array([[1, 2, 3], [4, 5, 6]])

>>> mat

array([[1, 2, 3], 

[4, 5, 6]])

>>> mat.reshape(3,2)

array([[1, 2], [3, 4], [5, 6]]) 

• ravel : flatten array to 1-d 
>>> mat.ravel()

array([1, 2, 3, 4, 5, 6]) 



Array manipulation

• concatenate : join arrays together 
>>> mat1 = np.array([[1, 2, 3], [4, 5, 6]]) 

>>> mat2 = np.array([[7, 8, 9], [10, 11, 12]]) 

>>> np.concatenate((mat1, mat2))

array([[ 1, 2, 3], 

[ 4, 5, 6],

[ 7, 8, 9], 

[10, 11, 12]]) 

>>> np.concatenate((mat1, mat2), axis=1) 

array([[ 1, 2, 3, 7, 8, 9], 

[ 4, 5, 6, 10, 11, 12]]) 

• split : split array to N pieces
>>> np.split(mat1, 3, axis=1) 

[array([[1], [4]]), array([[2], [5]]), array([[3], [6]])] 



Array operations 

• Most operations for numpy arrays are done element-wise 

• – +, -, *, /, ** 

• >>> a = np.array([1.0, 2.0, 3.0]) 

• >>> b = 2.0 

• >>> a * b array([ 2., 4., 6.]) 

• >>> a + b array([ 3., 4., 5.]) 

• >>> a * a array([ 1., 4., 9.]) 



Array operations 

• Numpy has special functions which can work with array 
arguments, e.g. sin, cos, exp, sqrt, log, ... 

• >>> import numpy, math
>>> a = numpy.linspace(-pi, pi, 8)
>>> a
array([-3.14159265, -2.24399475, -1.34639685, -
0.44879895,0.44879895, 1.34639685, 2.24399475, 3.14159265]) 

• >>> math.sin(a) 

• Traceback (most recent call last): File "<stdin>", line 1, in ? 

• TypeError: only length-1 arrays can be converted to Python 
scalars 

• >>> numpy.sin(a)
array([ -1.22464680e-16, -7.81831482e-01, -9.74927912e-01, 

• -4.33883739e-01, 4.33883739e-01, 9.74927912e-01, 7.81831482e-01, 
1.22464680e-16]) 



Vectorized operations 

• for loops in Python are slow

• Use “vectorized” operations when possible

• Example: difference 
arr = np.arange(1000) 

dif = np.zeros(999, int) 

for i in range(1, len(arr)): 

dif[i1] = arr[i] arr[i1]

• VS
arr = np.arange(1000) 

dif = arr[1:] arr[:1] 

• – for loop is ~80 times slower! 



I/O with Numpy

• NumPy provides functions for reading data from file and 

for writing data into the files 

• Simple text files 

• numpy.loadtxt

• numpy.savetxt

• Data in regular column layout 

• Can deal with comments and different column delimiters 



Random numbers 

• The module numpy.random provides several functions 

for constructing random arrays 

• random: uniform random numbers – normal: normal distribution

• poisson: Poisson distribution

• etc.... 

>>> import numpy.random as rnd

>>> rnd.random((2,2))

array([[ 0.02909142, 0.90848 ], 

[ 0.9471314 , 0.31424393]]) 

>>> rnd.poisson(size=(2,2))

array([[0, 1],

[2, 0]])



Polynomials 

• Polynomial is defined by array of coefficients p p(x, N) = 

p[0] xN-1 + p[1] xN-2 + ... + p[N-1] 

• Least square fitting: numpy.polyfit

• Evaluating polynomials: numpy.polyval

• Roots of polynomial: numpy.roots

• ... 
>>> x = np.linspace(-4, 4, 7) 

>>> y = x**2 + rnd.random(x.shape) 

>>> p = np.polyfit(x, y, 2) 

>>> p

array([ 0.96869003, -0.01157275, 0.69352514]) 



Linear algebra 

• Numpy can calculate matrix and vector products efficiently 

• dot, vdot, …

• Eigenproblems

• linalg.eig, linalg.eigvals, …

• Linear systems and matrix inversion 

• linalg.solve, linalg.inv

>>> A = np.array(((2, 1), (1, 3)))

>>> B = np.array(((-2, 4.2), (4.2, 6)))

>>> C = np.dot(A, B)

>>> b = np.array((1, 2))

>>> np.linalg.solve(C, b) # solve C x = b 

array([ 0.04453441, 0.06882591])



NumPy performance

• Matrix multiplication (C=A*B), matrix dimension 200 

• pure python: 5.30s

• naive C: 0.09s

• numpy.dot: 0.01s



Summary

• NumPy provides a static array data structure 

• Multidimensional arrays 

• Fast mathematical operations for arrays 

• Arrays can be broadcasted into same shapes 

• Tools for linear algebra and random numbers

• To get performance, use high-level syntax! 
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Synopsis

• What is matplotlib?

• Basic concepts

• Figures and subplots

• Simple plots from plain text files

• Replacing gnuplot in your workflow

• More complex plots

• Different types of plots

• Preparation for publication



What is matplotlib?

• matplotlib is a plotting library for Python

• Philosophy is to “make the easy things easy and the hard 
things possible”.

• Designed for both:
• Interactive plotting

• Production of publication-quality figures

• Large amount of functionality:
• Scientific and statistical plots

• Heatmaps and contours

• Surfaces

• Geographical and map-based plotting

• Closely integrated with numpy



Basic Concepts

• Everything assembled by Python commands

• Lines, points, axes

• Titles, legends

• Multiple plots

• Issue show command to display plot

• You use commands to set which subplot you are currently 

working on

• Default is to plot to screen but you can also save to image 

with single command



Example: random scatterplot

• Assuming we are using ipython –pylab:

x = randn(1000)

y = randn(1000)

plot(x, y, ‘+’)



Figures and subplots

• The whole plotting area is known as the figure

• Within the figure there can be subplots

• subplots are placed on a regular grid within the figure

• (If you need more control over placement you can use axes)

• For simple plots there is usually only one subplot (1, 1, 1)

• You use the subplot command to specify which subplot 

you are currently working on

• subplot(nrows, ncols, plot number)



Example: random scatterplots

• Assuming we are using ipython –pylab:

x = randn(1000)

y = randn(1000)

fig = figure()

subplot(2, 1, 1)

plot(x, y, ‘b+’)

subplot(2, 1, 2)

plot(x, y, ‘rx’)

fig.show()



Simple plots from plain text

• People often want to have a quick look at data in a plain 

text file

• Gnuplot/Excel often used for this but matplotlib can provide a 
simple, feature-rich replacement.

• Manipulate the data interactively and replot

• Can save the session to keep record of what you did if required

• Use numpy functions for reading data

• Simple interface to complex reading if required

• As data is in numpy, matplotlib can plot it easily



Example: read and plot x, y data

• Assuming we are using ipython –pylab:

data = genfromtxt(‘random1.dat’)

fig = figure()

subplot(1, 1, 1)

plot(data[:,0], data[:,1], ‘g+-’)

fig.show()



Setting axis labels, titles and legends

• Axis labels: use xlabel and ylabel (they act on the 

currently selected subplot):

• xlabel(“Job Size”)

• Title: use fig.suptitle:

• fig.suptitle(“Job Size Distribution on ARCHER”)

• Legend: use legend (acts on the currently selected 

subplot):

• Requires that label is set for plot:

plot(jobs[:,0], jobs[:,1], ‘r—’, label=“2014”)

legend()



Save to image file

• Saving to image file is simple using fig.savefig
• File format is determined from the extension

• e.g. to save to a PNG image:

fig.savefig(“archer_jobs.png”)

• Resolution set using dpi option:
• e.g:

fig.savefig(“archer_jobs.png”, dpi=300)

• Commonly supports: png, jpg, pdf, ps



Other types of plots

• http://matplotlib.org/gallery.html



Preparing publication images

• You will probably want different settings for each journal

• matplotlib uses a settings file: matplotlibrc, to setup font 

sizes, types and plotting defaults

• Useful to keep a different matplotlibrc file for each journal

• Import a particular settings file with:

from matplotlib import rc_file

rc_file(‘/path/to/my/matplotlibrc’)

• From Damon McDougall: http://bit.ly/1jIuuU0



Useful matplotlibrc font settings

# Font sizes and types

axes.labelsize : 9.0  # fontsize of the x any y labels  

xtick.labelsize : 9.0  # fontsize of the tick labels  

ytick.labelsize : 9.0  # fontsize of the tick labels  

legend.fontsize : 9.0  # fontsize in legend

font.family : serif  

font.serif : Computer Modern Roman

# Marker size

lines.markersize : 3

# Use TeX to format all text

text.usetex : True



Setting a nice figure ratio

WIDTH = 500.0  # Figure width in pt (usually from LaTeX)

FACTOR = 0.45  # Fraction of the width you'd like the figure to occupy  

widthpt = WIDTH * FACTOR

inperpt = 1.0 / 72.27  

golden_ratio = (np.sqrt(5) - 1.0) / 2.0  # because it looks good

widthin = widthpt * inperpt

heightin = widthin * golden_ratio

figdims = [widthin, heightin] # Dimensions as list 

fig = plt.figure(figsize=figdims)



Setting a nice figure ratio (cont.)

• When you include in the LaTeX source you should specify 

the scale factor as the width:

\begin{figure}
\includegraphics[width=0.45\textwidth]{figure.pdf}
\end{figure}



Eliminate unnecessary whitespace 

• Eliminate the whitespace with:

fig.tight_layout(pad=0.1)

• Finally, save your figure in a useful format:

fig.savefig(’plot.pdf’, dpi=600)



Summary

• Simple ,interactive plotting:

• numpy allows you to easily read data

• Plotting syntax is simple and concise

• Complex plotting types also available

• Can start from code for simple plots

• Many examples available online

• Producing publication-ready images is relatively simple

• Easily customised for different scenarios

• The more you use matplotlib, the more you get out of it!
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SciPy
• NumPy provides arrays, basic linear algebra, random number generation, and 

Fourier transforms

• SciPy builds on NumPy (e.g. by using arrays) and expands this with (additional) 
routines for:
• Numerical integration

• Interpolation

• Linear algebra and wrappers to LAPACK & BLAS

• Sparse linear algebra

• Image processing

• Optimisation

• Signal processing

• Statistical functions

• Spatial data structures and algorithms

• Airy functions

• Note: no PDE solvers (though other packages exist) 



Integration 

• Routines for numerical integration – single, double and triple 
integrals 

• Function to integrate can be given by function object or by fixed 
samples 

• e.g. solve the ODE 
• dy/dt = -2y between t = 0..4, with the initial condition y(t=0) = 1

import numpy as np

from scipy.integrate import odeint

def calc_derivative(ypos, time):

return -2*ypos

time_vec = np.linspace(0, 4, 40)

yvec = odeint(calc_derivative, 1, time_vec)

pl.plot(time_vec, yvec)



Optimisation
• Several classical optimisation algorithms

• Quasi-Newton type optimisations
• Least squares fitting
• Simulated annealing 
• General purpose root finding

• Rosenbrock function

>>> from scipy.optimize import fmin
>>> def rosen(x):
... return sum(100.0*(x[1:]-x[:-1]**2.0)**2.0 + (1-x[:-1])**2.0) 

>>> x0 = [1.3, 0.7, 0.8, 1.9, 1.2]
>>> xopt = fmin(rosen, x0, xtol=1e-8) 

Optimization terminated successfully.

Current function value: 0.000000

Iterations: 339

Function evaluations: 571



Special functions 

• SciPy contains huge set of special functions – Bessel 

functions

• Legendre functions

• Gamma functions

• Bessel function �

>>> from scipy.special import * 

>>> x = np.linspace(0, 5, 20) 

>>> plot(x, jv(1, x))

>>> plot(x, jv(2, x)) 



Linear Algebra

• Wider set of linear algebra operations than in Numpy

• decompositions,

• matrix exponentials 

• Routines also for sparse matrices

• storage formats

• iterative algorithms 

>>> import numpy as np
>>> from scipy.sparse.linalg import LinearOperator, cg 

>>> # Define “Sparse” matrix-vector product 

>>> def mv(v): 

>>> return np.array([ 2*v[0], 3*v[1]]) 

>>> A = LinearOperator( (2,2), matvec=mv, dtype=float )
>>> b = np.array((4.0, 1.0))
>>> x = cg(A, b) # Solve linear equation Ax = b with conjugate gradient

>>> x

(array([ 2.        ,  0.33333333]), 0)



Other packages

• Pandas
• Offers R-like statistical analysis of numerical tables and time series

• SymPy
• Python library for symbolic computing

• scikit-image 
• Advanced image processing

• scikit-learn
• Package for machine learning

• Sage
• Open source replacement for Mathematica / Maple / Matlab

(built using Python)
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Why interface to Fortran/C

• Provide glue to dynamically organise code

• Complex software coordination provided by Python

• Performance of compiled codes with flexibility of Python

• e.g. incorporate Python analysis and visualisation into existing 
codebase

• Provide flexible way to extract results from code using Python 

• Reuse code that you already have

• Gradually introduce new functionality using Python



What is required?

• Name of external function

• Types of arguments to be passed from Python to external 

functions:

• Integers, real numbers, arrays, characters?

• Sequence of arguments

• Are the arguments input parameters, output parameters 

or to be modified by the external function?

• Packaged in a way that can be imported by Python

• f2py provides a way to do this simply and quickly



f2py: Interfacing to Fortran

• Provides a way to describe external functions and their 

arguments

• Packages-up the external code in a way that can be 

imported and used by Python

• You need to provide:

• The Fortran source code (to be compiled)

• A file describing the external function and arguments (f2py can help 
you generate this)



Example: array_sqrt.f90

! Example Fortran: sqrt of array

subroutine array_sqrt(n, a_in, a_out)

implicit none

integer, intent(in) :: n

real*8, dimension(n), intent(in) :: a_in

real*8, dimension(n), intent(out) :: a_out

integer :: i

do i = 1, n

a_out(i) = sqrt(a_in(i))

end do

end subroutine array_sqrt



Create signature file

• f2py can try to create the signature file automatically:

f2py array_sqrt.f90 -m farray -h array_sqrt.pyf

• The Python module will be called: farray

• Signature in text file called: “array_sqrt.pyf”



Produce compiled library

• Once you have verified that the signature file is correct

• Use f2py to compile the library file that can be imported 

into Python:

f2py -c array_sqrt.pyf array_sqrt.f90

• Produces a library file called: farray.so



Calling from Python

>>> from farray import array_sqrt

>>> import numpy as np

>>> a = np.array([1.0,2.0,3.0,4.0])

>>> array_sqrt(a)

array([ 1.  ,  1.41421356,  1.73205081,  2.     ])



f2py: Interfacing to C

• f2py is the simplest way to interface C to Python

• Basic procedure is very similar to Fortran

• Differences:

• You must write the signature file by hand

• You must use the intent(c) attribute for all variables

• You must define the function name with the intent(c) attribute

• Only 1D arrays can be handled by C, if you pass a 
multidimensional array you must compute the correct index.

• Build in exactly the same way as Fortran example (but 

with different source code!)



Example: Signature file

python module farray

interface  

subroutine array_sqrt(n,a_in,a_out) 

intent(c) :: array_sqrt

intent(c)  ! Adds to all following definitions

integer, optional,intent(in),check(len(a_in)>=n),depend(a_in) :: 

n=len(a_in)

real*8 dimension(n),intent(in) :: a_in

real*8 dimension(n),intent(out),depend(n) :: a_out

end subroutine array_sqrt

end interface

end python module farray



Other Options for C

• Native Python interface
• Fully-flexible and portable

• Complex and verbose

• Best if you are interfacing a large amount of code and/or have a 
large software development project

• Cython
• Standard C-like Python (or Python-like C)

• (I have never had much success…)

• SWIG
• Very generic and feature-rich

• Supports multiple languages other than Python (e.g. Perl, Ruby)



Summary

• f2py is a simple way to call Fortran/C code from Python

• Simpler for Fortran than for C

• Care needed when using multidimensional arrays in C

• Calling sequence is converted to something more 

Pythonic:

array_sqrt(n, a_in, a_out), becomes:

a_out = array_sqrt(a_in)

• Fortran/C can give better performance than Python



Goodbye! 

Virtual tutorial has finished


