
Welcome!

Virtual tutorial starts at 15:00 BST

Parallel IO and the

ARCHER Filesystem
ARCHER Virtual Tutorial, Wed 8th Oct 2014

David Henty <d.henty@epcc.ed.ac.uk>

Reusing this material

This work is licensed under a Creative Commons Attribution-

NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the

material under the following terms: You must give appropriate credit, provide a link to the

license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their permission

before reusing these images.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

Overview

• Why parallel IO is difficult

• The Lustre file system

• Standard parallel IO strategies

• MPI-IO

• Tuning Lustre

Why is Parallel IO Difficult?

• Difficult in principle

• combine distributed data into a single location

• data access patterns surprisingly complicated

• Difficult in practice

• individual disk IO speeds are not very fast

• file systems are complicated

• parallel file systems are even more complicated

• IO performance achieved by using multiple disks at once

1 2 3 4

1 2 3 4

1 2 3

1 2 3 4

Process 4
Process 2

Process 1

Process 3 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

4

Programmer View vs Machine View

1 2 3 4

4x4 array on 2x2 Process Grid

Parallel Data

File

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1 2 3 4 1 2 3 4 1 2 3 4

C O M P U T E | S T O R E | A N A L Y Z E

ARCHER’s Lustre – Cray Sonexion Storage

8

2 x OSSs and 8 x OSTs (Object Storage Targets)
● Contains Storage controller, Lustre server, disk controller

and RAID engine

● Each unit is 2 OSSs each with 4 OSTs of 10 (8+2) disks in a
RAID6 array

SSU: Scalable Storage Unit

MMU: Metadata Management Unit

Lustre MetaData Server
● Contains server hardware and storage

Multiple SSUs are combined to form
storage racks

C O M P U T E | S T O R E | A N A L Y Z E

ARCHER’s File systems

/fs2
6 SSUs

12 OSSs

48 OSTs

480 HDDs

4TB per HDD

1.4 PB Total

/fs3
6 SSUs

12 OSSs

48 OSTs

480 HDDs

4TB per HDD

1.4 PB Total

/fs4
7 SSUs

14 OSSs

56 OSTs

560 HDDs

4TB per HDD

1.6 PB Total

Infiniband Network

Connected to

the Cray XC30

via LNET router

service nodes.

C O M P U T E | S T O R E | A N A L Y Z E

Lustre data striping

10

Single logical user file

e.g.
/work/y02/y02/ted

OS/file-system

automatically divides

the file into stripes
Stripes are then read/written

to/from their assigned OST

Lustre’s performance comes from

striping files over multiple OSTs

C O M P U T E | S T O R E | A N A L Y Z E

Lustre

Client

Object Storage

Server (OSS) +

Object Storage

Target (OST)

Object Storage

Server (OSS) +

Object Storage

Target (OST)

Open

name

permissions

attributes

location

Metadata

Server

(MDS)

OSTs

Lustre

Client

Read/write

Opening a file

11

The client sends a request to the MDS to

opening/acquiring information about the file

The MDS then passes back a list of OSTs

• For an existing file, these contain the

data stripes

• For a new files, these typically contain a

randomly assigned list of OSTs where

data is to be stored

Once a file has been opened no

further communication is required

between the client and the MDS

All transfer is directly between the

assigned OSTs and the client

Summary
• Lustre achieves high bandwidth via multiple disks

• Single file can be striped across multiple disks

• allows simultaneous IO from multiple Object Storage Targets

• think of each OST as a separate IO path to disk

• Optimised for large transactions

• “please write 100 Mb to disk”

• Meta Data Server can be a bottleneck

• opening and closing files is serialised and can be slow

• not optimised for large numbers of small files

C O M P U T E | S T O R E | A N A L Y Z E

I/O strategies: Spokesperson (master/serial IO)

13

● One process performs I/O

● Data Aggregation or Duplication

● Limited by single I/O process

● Easy to program

● Pattern does not scale

● Time increases linearly with
amount of data

● Time increases with number of
processes

● Care has to be taken when doing
the all-to-one kind of
communication at scale

● Can be used for a dedicated I/O
Server

Bottlenecks

Lustre clients

C O M P U T E | S T O R E | A N A L Y Z E

I/O strategies: Multiple Writers – Multiple Files

14

● All processes perform

I/O to individual files

● Limited by file system

● Easy to program

● Pattern may not scale

at large process counts

● Number of files creates

bottleneck with metadata

operations

● Number of simultaneous

disk accesses creates

contention for file system

resources

9

10

13

14

2x2 to 1x4 Redistribution

data1.dat

data2.dat

data3.dat

data4.dat

write

1

2

3

4

5

6

7

8

11

12

15

16

1 2 5 6

3 4 7 8

9 10 13 14

11 12 15 16

newdata4.dat

newdata3.dat

newdata2.dat

newdata1.dat

read

1

3

9

11

2

4

10

12

5

7

13

15

14

16

6

8

reorder

C O M P U T E | S T O R E | A N A L Y Z E

I/O strategies: Multiple Writers – Single File

16

● Each process performs I/O
to a single file which is
shared.

● Performance

● Data layout within the
shared file is very
important.

● At large process counts
contention can build for
file system resources.

● Not all programming
languages support it

● C/C++ can work with
fseek

● No real Fortran
standard

C O M P U T E | S T O R E | A N A L Y Z E

I/O strategies: Collective IO to single or
multiple files

17

● Aggregation to a processor
in a group which processes
the data.

● Serializes I/O in group.

● I/O process may access
independent files.

● Limits the number of files
accessed.

● Group of processes
perform parallel I/O to a
shared file.

● Increases the number of
shares to increase file
system usage.

● Decreases number of
processes which access a
shared file to decrease file
system contention.

Summary
• Need subgroups of IO processes to do IO simultaneously

• too many and there is contention for file system resources

• too few and we do not use all the OSTs

• Far too complicated to do this ourselves

• need some library to help us out

• For example, MPI-IO

• part of MPI standard since MPI-2.0

MPI-IO Approach
• Each process / rank tells MPI-IO what portion(s) of the file

it wants to read / write

• uses MPI Derived Datatypes

• this is called the File View

• Tell MPI-IO what data to write

• automatically goes to the position(s) selected by the file view

• all the communications / buffering / aggregation handled by MPI-IO

• Allows for collective IO

• MPI-IO has a global view

• can aggregate data for a small number of large IO transactions

Combining File Views

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

rank 0

(0,0)

rank 1

(0,1)

rank 3

(1,1)

rank 2

(1,0)
rank 0

rank 1

rank 3

rank 2

Collective IO

Combine ranks 0 and 1 for single

contiguous read/write to file

Combine ranks 2 and 3 for single

contiguous read/write to file

MPI-IO on ARCHER
• Optimised for the Lustre file system

• Scales the number of IO processes appropriate to the

number of OSTs and the total number of processes

• But ...

• the striping of a file (the number of OSTs) is set by the user

• important to get this right

Lustre Striping
• Essential to stripe large files across multiple disks

• but striping small files across many disks is bad

• Default striping on ARCHER is across 4 OSTs

• Can set this yourself using:
• lfs setstripe -c <nstripe> <directory>

• to use all the OSTs: nstripe = -1

• to enquire: lfs getstripe <directory>

• Test case: large 3D dataset across 3D process grid
• IO done using MPI-IO

1283 per proc: 16 MiB to 64 GiB

Summary
• Master IO unaffected by striping

• Same bandwidth as parallel IO with no striping

• Around 400 MiB/s independent of process count

• With parallel IO and striping

• bandwidth scales with process count (until all OSTs are used)

• achieve around 2 GiB/s for default striping (4 OSTs)

• 10’s of GiB/s for full striping (all OSTs, nstripe = -1)

Collective vs Independent IO

• Replace MPI_File_write_all with MPI_File_write

• identical functionality

• different performance

• Results with full striping

Processes Individual Collective

1 49.5 MiB/s 441 MiB/s

8 5.9 MiB/s 404 MiB/s

64 2.4 MiB/s 1630 MiB/s

Conclusions
• Good IO requires three things to be true

• A sensible number of IO processes

• not a single process, not all processes

• MPI-IO does this for you

• File striped across multiple disks

• in Lustre, use multiple OSTs via: lfs setstripe

• Collective IO

• IO processes aggregate data: small number of large IO operations

How good is my IO?

• Essential to quantify in terms of GiB/s

• look at the size of your files

• time the IO operations

• hundreds of MiB/s: bad

• tens of GiB/s: good

• Performance tools may help here

• eg Cray performance tools can report IO rates

Other libraries
• What if I use NetCDF / HDF5 / ... ?

• Use a version that layers on top of MPI-IO

• Ensure that it is doing collective IO

• Set the Lustre striping for the files

Help with IO

• Contact the CSE support team!

• email: support@archer.ac.uk

• Working on a white paper on parallel IO

• plan to have first version available in November

mailto:support@archer.ac.uk

Goodbye!

Thanks for attending

