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Overview 

• Why parallel IO is difficult 

 

• The Lustre file system 

 

• Standard parallel IO strategies 

 

• MPI-IO 

 

• Tuning Lustre 



Why is Parallel IO Difficult? 

• Difficult in principle 

• combine distributed data into a single location 

• data access patterns surprisingly complicated 

 

• Difficult in practice 

• individual disk IO speeds are not very fast 

• file systems are complicated 

• parallel file systems are even more complicated 

• IO performance achieved by using multiple disks at once 
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ARCHER’s Lustre – Cray Sonexion Storage 
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2 x OSSs and 8 x OSTs (Object Storage Targets) 
● Contains Storage controller, Lustre server, disk controller 

and RAID engine 

● Each unit is 2 OSSs each with 4 OSTs of 10 (8+2) disks in a 
RAID6 array 

SSU: Scalable Storage Unit 

MMU: Metadata Management Unit 

Lustre MetaData Server 
● Contains server hardware and storage 

Multiple SSUs are combined to form 
storage racks 
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ARCHER’s File systems 

/fs2 
6 SSUs 

12 OSSs 

48 OSTs 

480 HDDs 

4TB per HDD 

1.4 PB Total 

/fs3 
6 SSUs 

12 OSSs 

48 OSTs 

480 HDDs 

4TB per HDD 

1.4 PB Total 

/fs4 
7 SSUs 

14 OSSs 

56 OSTs 

560 HDDs 

4TB per HDD 

1.6 PB Total 

Infiniband Network 

Connected to 

the Cray XC30 

via LNET router 

service nodes. 
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Lustre data striping 
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Single logical user file 

e.g. 
/work/y02/y02/ted 

OS/file-system 

automatically divides 

the file into stripes 
Stripes are then read/written 

to/from their assigned OST 

Lustre’s performance comes from 

striping files over multiple OSTs 
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Lustre 

Client 

Object Storage 

Server (OSS) + 

Object Storage 

Target (OST) 

Object Storage 

Server (OSS) + 

Object Storage 

Target (OST) 

Open 

name 

permissions 

attributes 

location 

Metadata 

Server 

(MDS) 

OSTs 

Lustre 

Client 

Read/write 

Opening a file 

11 

The client sends a request to the MDS to 

opening/acquiring information about the file 

 

The MDS then passes back a list of  OSTs  

• For an existing file, these contain the 

data stripes 

• For a new files, these typically contain a 

randomly assigned list of OSTs where 

data is to be stored 

Once a file has been opened no 

further communication is required 

between the client and the MDS 

 

All transfer is directly between the 

assigned OSTs and the client 



Summary 
• Lustre achieves high bandwidth via multiple disks 

• Single file can be striped across multiple disks 

• allows simultaneous IO from multiple Object Storage Targets 

• think of each OST as a separate IO path to disk 

 

• Optimised for large transactions 

• “please write 100 Mb to disk” 

 

• Meta Data Server can be a bottleneck 

• opening and closing files is serialised and can be slow 

• not optimised for large numbers of small files 
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I/O strategies: Spokesperson (master/serial IO) 
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● One process performs I/O 

● Data Aggregation or Duplication 

● Limited by single I/O process 

● Easy to program 

● Pattern does not scale 

● Time increases linearly with 
amount of data 

● Time increases with number of 
processes 

● Care has to be taken when doing 
the all-to-one kind of 
communication at scale 

● Can be used for a dedicated I/O 
Server 

Bottlenecks 

Lustre clients 
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I/O strategies: Multiple Writers – Multiple Files 
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● All processes perform 

I/O to individual files 

● Limited by file system 

● Easy to program 

● Pattern may not scale 

at large process counts 

● Number of files creates 

bottleneck with metadata 

operations 

● Number of simultaneous 

disk accesses creates 

contention for file system 

resources 
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I/O strategies: Multiple Writers – Single File 
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● Each process performs I/O 
to a single file which is 
shared. 

● Performance 

● Data layout within the 
shared file is very 
important. 

● At large process counts 
contention can build for 
file system resources. 

● Not all programming 
languages support it 

● C/C++ can work with 
fseek 

● No real Fortran 
standard 
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I/O strategies: Collective IO to single or 
multiple files 
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● Aggregation to a processor 
in a group which processes 
the data.  

● Serializes I/O in group. 

● I/O process may access 
independent files. 

● Limits the number of files 
accessed. 

● Group of processes 
perform parallel I/O to a 
shared file. 

● Increases the number of 
shares to increase file 
system usage. 

● Decreases number of 
processes which access a 
shared file to decrease file 
system contention. 

 



Summary 
• Need subgroups of IO processes to do IO simultaneously 

• too many and there is contention for file system resources 

• too few and we do not use all the OSTs 

 

• Far too complicated to do this ourselves 

• need some library to help us out 

 

• For example, MPI-IO 

• part of MPI standard since MPI-2.0 

 



MPI-IO Approach 
• Each process / rank tells MPI-IO what portion(s) of the file 

it wants to read / write 

• uses MPI Derived Datatypes 

• this is called the File View 
 

• Tell MPI-IO what data to write 

• automatically goes to the position(s) selected by the file view 

• all the communications / buffering / aggregation handled by MPI-IO 
 

• Allows for collective IO 

• MPI-IO has a global view 

• can aggregate data for a small number of large  IO transactions 



Combining File Views 
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Collective IO 

Combine ranks 0 and 1 for single 

contiguous read/write to file 

Combine ranks 2 and 3 for single 

contiguous read/write to file 



MPI-IO on ARCHER 
• Optimised for the Lustre file system 

 

• Scales the number of IO processes appropriate to the 

number of OSTs and the total number of processes 

 

• But ... 

 

• the striping of a file (the number of OSTs) is set by the user 

• important to get this right 



Lustre Striping 
• Essential to stripe large files across multiple disks 

• but striping small files across many disks is bad 

 

• Default striping on ARCHER is across 4 OSTs 

 

• Can set this yourself using: 
• lfs setstripe -c <nstripe> <directory> 

• to use all the OSTs: nstripe = -1 

• to enquire: lfs getstripe <directory> 

 

• Test case: large 3D dataset across 3D process grid 
• IO done using MPI-IO 



1283 per proc: 16 MiB to 64 GiB 



Summary 
• Master IO unaffected by striping 

• Same bandwidth as parallel IO with no striping 

• Around 400 MiB/s independent of process count 

 

• With parallel IO and striping 

• bandwidth scales with process count (until all OSTs are used) 

 

• achieve around 2 GiB/s for default striping (4 OSTs) 

• 10’s of GiB/s for full striping (all OSTs, nstripe = -1) 

 



Collective vs Independent IO 

• Replace MPI_File_write_all with MPI_File_write  

• identical functionality 

• different performance 

 

• Results with full striping 

 
Processes Individual Collective 

1 49.5 MiB/s 441 MiB/s 

8 5.9 MiB/s 404 MiB/s 

64 2.4 MiB/s 1630 MiB/s 



Conclusions 
• Good IO requires three things to be true 

 

• A sensible number of IO processes 

• not a single process, not all processes 

• MPI-IO does this for you 

 

• File striped across multiple disks 

• in Lustre, use multiple OSTs via: lfs setstripe 

 

• Collective IO 

• IO processes aggregate data: small number of large IO operations 



How good is my IO? 

• Essential to quantify in terms of GiB/s 

 

• look at the size of your files 

• time the IO operations 

 

• hundreds of MiB/s: bad 

• tens of GiB/s: good 

 

• Performance tools may help here 

• eg Cray performance tools can report IO rates 



Other libraries 
• What if I use NetCDF / HDF5 / ... ? 

 

• Use a version that layers on top of MPI-IO 

 

• Ensure that it is doing collective IO 

 

• Set the Lustre striping for the files 

 



Help with IO 
 

• Contact the CSE support team! 

 

• email: support@archer.ac.uk 

 

• Working on a white paper on parallel IO 

 

• plan to have first version available in November 

 

mailto:support@archer.ac.uk


Goodbye! 

 

Thanks for attending 


