
Welcome!

Virtual tutorial starts at 15:00 BST

eCSE: Supporting Data
ARCHER Virtual Tutorial, Wed 3rd September 2014

Lorna Smith, Chris Johnson, Mark Filipiak, Xu Guo

EPCC

Reusing this material

This work is licensed under a Creative Commons Attribution-

NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the

material under the following terms: You must give appropriate credit, provide a link to the
license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their permission
before reusing these images.

Introduction

• Programme provides funding to ARCHER user community

to develop software in a sustainable manner for ARCHER

• Objectives

• To sustain key codes for the UK computational science community

• To facilitate efficient use of ARCHER resources through enhanced
code performance/functionality

• To offer a not‐for-profit service that provides value for money to the
HPC user community and beyond

• Also

• Develop and sustain codes and communities from new areas

• Support and encourage early career researchers

Submission Format
• After calls opens, proposals should be submitted via SAFE:

• https://www.archer.ac.uk/safe/

• Please register first if you are not a registered user in SAFE

• Two components to the submission

• Project Information

• Project Proposal

• Project Information

• Mandatory information such as names, proposed start date, travel requested

• Required resources

• Primarily for the eCSE team to determine if any additional support required

• Additional AU’s must however be justified

Submission: Project Proposal Template

• Project Objectives

• Project Overview

• Applicants’ Track Record

• Technical Information

• Computational Benefits

• Scientific Benefits

• Benefits for the ARCHER Community

• Sustainability / Pathways to Impact

• Embedded CSE Support Requested / Work Plan

Project Objectives

• Form part of the proposal assessment criteria

• And if accepted will be asked to report against these objectives
• Used to assess the final success of your project

• Should therefore be specific and measurable

• Examples include but are not limited to:
• The enablement of the scientific community to perform novel and

previously untenable simulations

• A quantifiable improvement in performance or scaling of a code

• The integration of new algorithms/functionality into a code

• Measurable outcomes leading to wider accessibility in the user
community

• Project outcomes of specific importance to the ARCHER community

Technical Background

• Demonstrate a good knowledge and understanding of
previous and current work in the related area

• May include but is not limited to:
• A brief summary of the previous / current use of the code

• HPC platforms used, the software environments for the code running,
the number of cores and problem size used, etc

• The previous / current code performance, scaling and profiling

• The major algorithms and functional updates related to the code to
be used in the proposed project

• The important prerequisites for the proposed project, e.g. the key
algorithms, libraries, software to be installed, etc

Previous code performance, scaling and

profiling
• Should allow the panel to understand the current performance of the

code on ARCHER

• Ideally results will be on ARCHER, but if not, should address
architecture differences

• Provide confidence results are transferrable

• Need not be your “own” results, but must provide confidence in their

accuracy

• Must give confidence that the results are representative of the
problems you wish to consider in your proposal

• i.e. scientific beneficiary systems

• Need not be same systems but should be representative

Previous code performance, scaling and

profiling
• Should demonstrate the codes appropriateness / ability to

utilise ARCHER
• Some codes are more suited to other forms of funding

• Should address current code limitations and motivate
developments proposed
• Profiling evidence

• e.g. why does scaling tail-off?

• e.g. how can this be addressed?

• e.g. can you quantify the expected performance improvements?

• Can be used to provide confidence that the project objectives
are realistic and achievable

Previous code performance, scaling and

profiling
• The major algorithms and functional updates related to the code to

be used in the proposed project

• Motivated by your performance data

• The important prerequisites for the proposed project, e.g. the key
algorithms, libraries, software to be installed, etc

• Provide confidence that the work can actually be done on ARCHER

• Particularly important if code has not been run on ARCHER before

• Helps the eCSE team understand project and support requirements

How do I generate this data?

• The centralised eCSE team can help

• Either through advise or carrying out some initial
benchmarking/profiling

• You can apply for “EPSRC Instant Access”

• Provides pump priming time for new users

• Limited number of AUs available over 6 months for testing

• Various tools available on ARCHER to obtain this

information

• Next part of the tutorial discusses this in more detail

Performance data

• Total wall clock time

• System commands (e.g. time) or batch system statistics

• Built-in timers in the program (e.g. MPI_Wtime)

• Built-in timers can be used to get fine-grained timings,

e.g., excluding initialization time, or I/O time.

• No information about hardware related issues e.g. cache utilization

• Information about load imbalance and communication statistics is
difficult to obtain

Performance analysis tools

• On Archer

• Cray performance tools

• Works with all compilers

• For Cray systems only

• Scalasca

• Currently works with the Cray compiler only

• Used on many other systems

Cray Performance Tools
• Instrument the code

• Adds special measurement code to binary

• Collect data from a run of the instrumented binary

• Sampling (statistical averages, low overhead) vs. tracing (data from

every traced call, high overhead, lots of data)

• Guided tracing: trace functions that are not too small and contribute a

lot to application’s run time. Cray Automatic Profiling Analysis does this.

• Analyze

• Text based analysis reports

• Visualization

Steps to Collecting Performance Data

• Access performance tools software

% module load perftools

• Build application keeping .o files

% make clean
% make

• Instrument application for automatic profiling analysis
• You will get an instrumented program <name>+pat

% pat_build –O apa a.out

• Run application (in a qsub script)
• You will get a performance file (“<sdatafile>.xf”) or multiple files in a

directory <sdatadir>

% aprun … a.out+pat

Steps to Collecting Performance Data (2)

• Generate text report and an .apa instrumentation file

% pat_report –o my_sampling_report [<sdatafile>.xf |
<sdatadir>]

• Inspect .apa file

• View sampling report as text or with Cray Apprentice

% app2 <sdatafile>.ap2

• Verify if additional instrumentation is needed

APA File Example
You can edit this file, if desired, and use it
to reinstrument the program for tracing like this:
#
pat_build -O cfd+pat+780378-3005s.apa
#
These suggested trace options are based on data from:
#
cfd+pat+780378-3005s.ap2
--
Collect the default HWPC group.

-Drtenv=PAT_RT_PERFCTR=default
--
Libraries to trace.

-g mpi
--
--
User-defined functions to trace, sorted by % of samples.

The way these functions are filtered can be controlled with
pat_report options (values used for this file are shown):
#
-s apa_max_count=200 No more than 200 functions are listed.
-s apa_min_size=800 Commented out if text size < 800 bytes.
-s apa_min_pct=1 Commented out if it had < 1% of samples.
-s apa_max_cum_pct=90 Commented out after cumulative 90%.
Local functions are listed for completeness, but cannot be traced.

-w # Enable tracing of user-defined functions.
Note: -u should NOT be specified as an additional option.

67.53% 6633 bytes
-T cfd_

--
-o cfd+apa # New instrumented program.
/fs3/y02/y02/ted/training/201312-CSE-EPCC/reggrid/cfd # Original program.

Effectively a series of command line arguments to pat_build

Generating Event Traced Profile from APA

• Instrument application for further analysis (a.out+apa)

% pat_build –O <apafile>.apa

• Run application (in a qsub script)

% aprun … a.out+apa

• Generate text report and visualization file (.ap2)

% pat_report –o my_text_report.txt [<datafile>.xf | <datadir>]

• View report as text or with Cray Apprentice

% app2 <datafile>.ap2

Using pat_report

• Always need to run pat_report at least once to perform

data conversion

• Combines information from the raw performance data in the xf file
(optimized for writing to disk) and the binary to produce an ap2 file

(optimized for visualization analysis)

• Generates a text report of performance results

• Data laid out in tables

• Many options for sorting, slicing or dicing data in the tables.

• pat_report –O <table option> *.ap2

• pat_report –O help (list of available profiles)

• Volume and type of information depends upon sampling vs. tracing.

pat_report: Profile (sampling)
Table 1: Profile by Function

Samp% | Samp | Imb. | Imb. |Group
| | Samp | Samp% | Function
| | | | PE=HIDE

100.0% | 7607.1 | -- | -- |Total
|---
| 67.6% | 5139.8 | -- | -- |USER
||--
| 67.5% | 5136.8 | 1076.2 | 17.9% | cfd_
||==
| 31.8% | 2421.7 | -- | -- |MPI
||--
|| 13.7% | 1038.5 | 315.5 | 24.1% |MPI_SSEND
|| 7.2% | 547.1 | 3554.9 | 89.5% |mpi_recv
|| 7.1% | 540.4 | 3559.6 | 89.6% |MPI_WAIT
|| 3.8% | 290.8 | 319.2 | 54.0% |mpi_finalize
|===
================ Observations and suggestions ========================

MPI Grid Detection:

A linear pattern was detected in MPI sent message traffic.
For table of sent message counts, use -O mpi_dest_counts.
For table of sent message bytes, use -O mpi_dest_bytes.

===

pat_report: Hardware Performance Counters
==

Total
--

PERF_COUNT_HW_CACHE_L1D:ACCESS 99236829284
PERF_COUNT_HW_CACHE_L1D:PREFETCH 1395603690
PERF_COUNT_HW_CACHE_L1D:MISS 5235958322
CPU_CLK_UNHALTED:THREAD_P 229602167200
CPU_CLK_UNHALTED:REF_P 7533538184
DTLB_LOAD_MISSES:MISS_CAUSES_A_WALK 29102852
DTLB_STORE_MISSES:MISS_CAUSES_A_WALK 6702254
L2_RQSTS:ALL_DEMAND_DATA_RD 3448321934
L2_RQSTS:DEMAND_DATA_RD_HIT 3019403605
User time (approx) 76.128 secs 205620987829 cycles
CPU_CLK 3.048GHz
TLB utilization 2956.80 refs/miss 5.775 avg uses
D1 cache hit,miss ratios 95.1% hits 4.9% misses
D1 cache utilization (misses) 20.22 refs/miss 2.527 avg hits
D2 cache hit,miss ratio 91.8% hits 8.2% misses
D1+D2 cache hit,miss ratio 99.6% hits 0.4% misses
D1+D2 cache utilization 246.83 refs/miss 30.853 avg hits
D2 to D1 bandwidth 2764.681MB/sec 220692603786 bytes

perftools documentation

% module load perftools

% man intro_craypat

% man pat_build

% man pat_report

Relevant Information

• After calls opens, proposals should be submitted via
SAFE:
• https://www.archer.ac.uk/safe/

• Please register first if you are not a registered user in SAFE

• Information and guidelines for applying can be found at:
• https://www.archer.ac.uk/community/eCSE/eCSE_ApplicationGuida

nce.pdf

• https://www.archer.ac.uk/community/eCSE/eCSE_ProposalTemplat
e.doc

• Applicants can request guidance from the centralised
CSE team before submission:
• Please contact ARCHER helpdesk: support@archer.ac.uk

Goodbye!

Virtual tutorial has finished

