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Introduction

• Programme provides funding to ARCHER user community 

to develop software in a sustainable manner for ARCHER

• Objectives 

• To sustain key codes for the UK computational science community

• To facilitate efficient use of ARCHER resources through enhanced
code performance/functionality

• To offer a not‐for-profit service that provides value for money to the
HPC user community and beyond

• Also

• Develop and sustain codes and communities from new areas

• Support and encourage early career researchers



Submission Format
• After calls opens, proposals should be submitted via SAFE:

• https://www.archer.ac.uk/safe/

• Please register first if you are not a registered user in SAFE

• Two components to the submission

• Project Information

• Project Proposal

• Project Information

• Mandatory information such as names, proposed start date, travel requested

• Required resources

• Primarily for the eCSE team to determine if any additional support required

• Additional AU’s must however be justified



Submission: Project Proposal Template

• Project Objectives

• Project Overview 

• Applicants’ Track Record

• Technical Information

• Computational Benefits

• Scientific Benefits

• Benefits for the ARCHER Community 

• Sustainability / Pathways to Impact 

• Embedded CSE Support Requested / Work Plan



Project Objectives

• Form part of the proposal assessment criteria

• And if accepted will be asked to report against these objectives
• Used to assess the final success of your project

• Should therefore be specific and measurable

• Examples include but are not limited to:
• The enablement of the scientific community to perform novel and 

previously untenable simulations

• A quantifiable improvement in performance or scaling of a code

• The integration of new algorithms/functionality into a code

• Measurable outcomes leading to wider accessibility in the user 
community

• Project outcomes of specific importance to the ARCHER community



Technical Background

• Demonstrate a good knowledge and understanding of 
previous and current work in the related area 

• May include but is not limited to:
• A brief summary of the previous / current use of the code 

• HPC platforms used, the software environments for the code running, 
the number of cores and problem size used, etc

• The previous / current code performance, scaling and profiling

• The major algorithms and functional updates related to the code to 
be used in the proposed project

• The important prerequisites for the proposed project, e.g. the key 
algorithms, libraries, software to be installed, etc



Previous code performance, scaling and 

profiling
• Should allow the panel to understand the current performance of the 

code on ARCHER

• Ideally results will be on ARCHER, but if not, should address 
architecture differences

• Provide confidence results are transferrable

• Need not be your “own” results, but must provide confidence in their 

accuracy

• Must give confidence that the results are representative of the 
problems you wish to consider in your proposal

• i.e. scientific beneficiary systems 

• Need not be same systems but should be representative



Previous code performance, scaling and 

profiling
• Should demonstrate the codes appropriateness / ability to 

utilise ARCHER
• Some codes are more suited to other forms of funding

• Should address current code limitations and motivate 
developments proposed
• Profiling evidence

• e.g. why does scaling tail-off?

• e.g. how can this be addressed?

• e.g. can you quantify the expected performance improvements? 

• Can be used to provide confidence that the project objectives 
are realistic and achievable



Previous code performance, scaling and 

profiling
• The major algorithms and functional updates related to the code to 

be used in the proposed project

• Motivated by your performance data

• The important prerequisites for the proposed project, e.g. the key 
algorithms, libraries, software to be installed, etc

• Provide confidence that the work can actually be done on ARCHER

• Particularly important if code has not been run on ARCHER before

• Helps the eCSE team understand project and support requirements



How do I generate this data?

• The centralised eCSE team can help

• Either through advise or carrying out some initial 
benchmarking/profiling

• You can apply for “EPSRC Instant Access”

• Provides pump priming time for new users

• Limited number of AUs available over 6 months for testing

• Various tools available on ARCHER to obtain this 

information

• Next part of the tutorial discusses this in more detail



Performance data

• Total wall clock time

• System commands (e.g. time) or batch system statistics

• Built-in timers in the program (e.g. MPI_Wtime)

• Built-in timers can be used to get fine-grained timings, 

e.g., excluding initialization time, or I/O time.

• No information about hardware related issues e.g. cache utilization

• Information about load imbalance and communication statistics is 
difficult to obtain



Performance analysis tools

• On Archer

• Cray performance tools

• Works with all compilers

• For Cray systems only

• Scalasca

• Currently works with the Cray compiler only

• Used on many other systems



Cray Performance Tools
• Instrument the code

• Adds special measurement code to binary

• Collect data from a run of the instrumented binary

• Sampling (statistical averages, low overhead) vs. tracing (data from 

every traced call, high overhead, lots of data)

• Guided tracing:  trace functions that are not too small and contribute a 

lot to application’s run time.  Cray Automatic Profiling Analysis does this.

• Analyze

• Text based analysis reports

• Visualization



Steps to Collecting Performance Data

• Access performance tools software

% module load perftools

• Build application keeping .o files

% make clean
% make

• Instrument application for automatic profiling analysis
• You will get an instrumented program <name>+pat

% pat_build –O apa a.out

• Run application (in a qsub script) 
• You will get a performance file (“<sdatafile>.xf”)  or multiple files in a 

directory <sdatadir>

% aprun … a.out+pat



Steps to Collecting Performance Data (2)

• Generate text report and an .apa instrumentation file

% pat_report –o my_sampling_report [<sdatafile>.xf | 
<sdatadir>]

• Inspect .apa file

• View sampling report as text or with Cray Apprentice

% app2 <sdatafile>.ap2

• Verify if additional instrumentation is needed 



APA File Example
#  You can edit this file, if desired, and use it
#  to reinstrument the program for tracing like this:
#
#           pat_build -O cfd+pat+780378-3005s.apa
#
#  These suggested trace options are based on data from:
#
#    cfd+pat+780378-3005s.ap2
# ----------------------------------------------------------------------
#       Collect the default HWPC group.

-Drtenv=PAT_RT_PERFCTR=default
# ----------------------------------------------------------------------
#       Libraries to trace.

-g mpi
# ----------------------------------------------------------------------
# ----------------------------------------------------------------------
#       User-defined functions to trace, sorted by % of samples.

#       The way these functions are filtered can be controlled with
#       pat_report options (values used for this file are shown):
#
#       -s apa_max_count=200    No more than 200 functions are listed.
#       -s apa_min_size=800     Commented out if text size < 800 bytes.
#       -s apa_min_pct=1        Commented out if it had < 1% of samples.
#       -s apa_max_cum_pct=90   Commented out after cumulative 90%.
#       Local functions are listed for completeness, but cannot be traced.

-w  # Enable tracing of user-defined functions.
# Note: -u should NOT be specified as an additional option.

# 67.53% 6633  bytes
-T cfd_

# ----------------------------------------------------------------------
-o cfd+apa # New instrumented program.
/fs3/y02/y02/ted/training/201312-CSE-EPCC/reggrid/cfd # Original program.

Effectively a series of command line arguments to pat_build



Generating Event Traced Profile from APA

• Instrument application for further analysis (a.out+apa)

% pat_build –O <apafile>.apa

• Run application (in a qsub script)

% aprun … a.out+apa

• Generate text report and visualization file (.ap2)

% pat_report –o my_text_report.txt [<datafile>.xf | <datadir>]

• View report as text or with Cray Apprentice

% app2 <datafile>.ap2



Using pat_report

• Always need to run pat_report at least once to perform 

data conversion

• Combines information from the raw performance data in the xf file 
(optimized for writing to disk) and the binary to produce an ap2 file 

(optimized for visualization analysis)

• Generates a text report of performance results

• Data laid out in tables

• Many options for sorting, slicing or dicing data in the tables.

• pat_report –O <table option> *.ap2

• pat_report –O help (list of available profiles)

• Volume and type of information depends upon sampling vs. tracing.



pat_report: Profile (sampling)
Table 1:  Profile by Function

Samp%  |  Samp |  Imb.  |  Imb.  |Group
|        |  Samp | Samp%  | Function
|        |        |        |  PE=HIDE

100.0% | 7607.1 |     -- |     -- |Total
|-----------------------------------------------
|  67.6% | 5139.8 |     -- |     -- |USER
||----------------------------------------------
|  67.5% | 5136.8 | 1076.2 |  17.9% | cfd_
||==============================================
|  31.8% | 2421.7 |     -- |     -- |MPI
||----------------------------------------------
||  13.7% | 1038.5 |  315.5 |  24.1% |MPI_SSEND
||   7.2% |  547.1 | 3554.9 |  89.5% |mpi_recv
||   7.1% |  540.4 | 3559.6 |  89.6% |MPI_WAIT
||   3.8% |  290.8 |  319.2 |  54.0% |mpi_finalize
|===============================================
================  Observations and suggestions  ========================

MPI Grid Detection:

A linear pattern was detected in MPI sent message traffic.
For table of sent message counts, use -O mpi_dest_counts.
For table of sent message bytes, use -O mpi_dest_bytes.

===========================================================



pat_report: Hardware Performance Counters
================================================================

Total
----------------------------------------------------------------

PERF_COUNT_HW_CACHE_L1D:ACCESS                  99236829284
PERF_COUNT_HW_CACHE_L1D:PREFETCH                 1395603690
PERF_COUNT_HW_CACHE_L1D:MISS                     5235958322
CPU_CLK_UNHALTED:THREAD_P                      229602167200
CPU_CLK_UNHALTED:REF_P                           7533538184
DTLB_LOAD_MISSES:MISS_CAUSES_A_WALK                29102852
DTLB_STORE_MISSES:MISS_CAUSES_A_WALK                6702254
L2_RQSTS:ALL_DEMAND_DATA_RD                      3448321934
L2_RQSTS:DEMAND_DATA_RD_HIT                      3019403605
User time (approx)               76.128 secs 205620987829 cycles
CPU_CLK                           3.048GHz
TLB utilization                 2956.80 refs/miss     5.775 avg uses
D1 cache hit,miss ratios          95.1% hits           4.9% misses
D1 cache utilization (misses)     20.22 refs/miss     2.527 avg hits
D2 cache hit,miss ratio           91.8% hits           8.2% misses
D1+D2 cache hit,miss ratio        99.6% hits           0.4% misses
D1+D2 cache utilization          246.83 refs/miss    30.853 avg hits
D2 to D1 bandwidth             2764.681MB/sec  220692603786 bytes



perftools documentation

% module load perftools

% man intro_craypat

% man pat_build

% man pat_report



Relevant Information

• After calls opens, proposals should be submitted via 
SAFE:
• https://www.archer.ac.uk/safe/

• Please register first if you are not a registered user in SAFE

• Information and guidelines for applying can be found at:
• https://www.archer.ac.uk/community/eCSE/eCSE_ApplicationGuida

nce.pdf

• https://www.archer.ac.uk/community/eCSE/eCSE_ProposalTemplat
e.doc

• Applicants can request guidance from the centralised
CSE team before submission:
• Please contact ARCHER helpdesk: support@archer.ac.uk



Goodbye!

Virtual tutorial has finished


