
Webinar: Parallel Moist Parcel-In-Cell code

Steef Böing, Gordon Gibb, David Dritschel, Nick Brown,
Michèle Weiland, Doug Parker & Alan Blyth

University of Leeds, University of St Andrews, EPCC

November 13, 2019

Böing, Gibb, Dritschel, et al. MPIC November 13, 2019 1 / 35



1 Moist Parcel-in-Cell code: overview

2 The Met Office NERC Cloud model (parallelisation framework)

3 Design and performance

4 Repository, installation, adding components

5 Conclusions and future work

Böing, Gibb, Dritschel, et al. MPIC November 13, 2019 2 / 35



eCSE project 12-10

A fully Lagrangian dynamical core for the Met Office NERC Cloud Model

St Andrews, Leeds, EPCC

Most fluid dynamics codes are either fully Eulerian (grid-based), or
semi-Lagrangian (advection using departure points and regridding)

Here: essentially Lagrangian (prognostics on parcels, solver uses grid)

Atmospheric Large-Eddy Simulation: e.g. Met Office/NERC Cloud
model (MONC).

Evaporation and condensation in clouds: discontinuity in underlying
equations.

Böing, Gibb, Dritschel, et al. MPIC November 13, 2019 3 / 35



Essentially Lagrangian modelling

The basic conservation principles of fluid dynamics are naturally expressed
in a Lagrangian way: e.g. mass is conserved following fluid “parcels”.

However, certain fields are more naturally Eulerian in character, e.g.
pressure. Here, one needs to solve for the entire field through “inversion”.

Conservation is Lagrangian. Inversion is Eulerian.

Can we exploit this for simulation?

Böing, Gibb, Dritschel, et al. MPIC November 13, 2019 4 / 35



Moist Parcel-In-Cell (MPIC)

The new “Moist Parcel-In-Cell” (MPIC) algorithm represents the
continuum by discrete “cloud (or environment) parcels”.

We use freely-moving parcels carrying any number of attributes (e.g. a
conserved temperature b`, specific humidity q, etc...)

Prototype model for 3D incompressible flow (Boussinesq, no rotation, no
precipitation, non-dimensional):

Du

Dt
= −∇p

ρ0
+ bẑ momentum

Db`

Dt
= 0 conserved temperature (pressure/phase changes)

Dq

Dt
= 0 specific humidity, total amount of water

∇ · u = 0 incompressibility

Böing, Gibb, Dritschel, et al. MPIC November 13, 2019 5 / 35



Phase transitions

The total buoyancy b is approximated by

b = b` + αq`

q` = q − qs(z) if q > qs(z), otherwise 0.

q` is the liquid water content.
qs is the saturation humidity, which decreases with height.
α is a scale factor related to the latent heat of condensation.

MPIC MONC

Figure : Zoom of the condensed liquid water distribution in a rising thermal.
MPIC uses an underlying grid with the same resolution as MONC.

Böing, Gibb, Dritschel, et al. MPIC November 13, 2019 6 / 35



Numerical implementation

We evolve vorticity (instead of momentum) and parcel position using RK4

Dω

Dt
= (∇ · F,∇ · G,∇ ·H),

Where F = ωu + bŷ, G = ωv − bx̂, H = ωw .

Needs velocity field (from grid).

Vector Poisson solver (finite difference, grid-based) to find velocity
potential A and velocity u = −∇× A.

ω = ∇2A.

Some further subtleties to ensure the vorticity is divergence free.

Böing, Gibb, Dritschel, et al. MPIC November 13, 2019 7 / 35



Parcel splitting and mixing

Parcels stretch and can split into 2 smaller parcels, depending on
vorticity.

Splitting: creates new parcel. Old and new parcel change position.

When parcel becomes too small: merged into surrounding parcels
using conservative operation via grid.

Böing, Gibb, Dritschel, et al. MPIC November 13, 2019 8 / 35



Parallelism

Initially, MPIC was developed using shared-memory parallelism (OpenMP),
which limits problem sizes to be addressed. HPC trend to large distributed
memory systems.

To implement hybrid (MPI+OpenMP) parallelism, we need to consider:

Change of parcel position: advection, splitting (local)

Parcel merging (local)

Vector Poisson solver (global)

Böing, Gibb, Dritschel, et al. MPIC November 13, 2019 9 / 35



Parallelism

Vector Poisson solver: requires global communication. Efficient
algorithms exist.

Much more parcel data than grid data.

Parcel data: local communication.

Böing, Gibb, Dritschel, et al. MPIC November 13, 2019 10 / 35



MONC history

Very high resolution (∼ 2 to 50 m), flexible, portable cloud modelling
framework, developed through collaboration between NCAS, the Met
Office, EPCC and several UK universities.

Based on Met Office Large Eddy Model (was limited to ∼ 512 cores)

Fortran 2003

Modular structure

Funded though NERC/JWCRP/eCSE

Leap-frog time integration

Böing, Gibb, Dritschel, et al. MPIC November 13, 2019 11 / 35



MONC parallelism

MONC supports decomposition in both the x and y dimensions with at
least one column per process

Number of columns can be distributed unevenly

Improved decomposition means more parallelism to be exploited

Asynchronous MPI

Includes FFT solver, based on FFTW (others not tested for PMIC)

IO-server (not used here)

Scales well on up to 32,768 cores

Böing, Gibb, Dritschel, et al. MPIC November 13, 2019 12 / 35



Model core and components

The model core contains the MONC entry point, registry functionality and
some utility modules

Plugins called components

Independent of each other

Standardized format

Enabled/disabled at runtime through configuration files

Easy to create new components for testing

Managed via a registry

Each can be called at different times, e.g.
1. Initialisation
2. Each time step
3. Finalisation

Böing, Gibb, Dritschel, et al. MPIC November 13, 2019 13 / 35



Initialise parcels

Determine velocity
from vorticity

Determine vorticity
tendency

Integrate parcels

Parcel splitting and
mixing

Write output
files/disgnostics

Parcel to grid
interpolation

Grid to parcel
interpolation

End

MPIC

Time step loop
RK4 Loop

MONC

Read in MONC
configuration file

Component 1

Component 2

Component n

Component 1

Component 2

Component n

Component 1

Component 2

Component n

End

Initialistion

Timestep

Finalisation



eCSE project

St Andrews, Leeds, EPCC (Michèle Weiland, Nick Brown, Gordon Gibb)

Ideas:

Harness MONC’s parallelism: hybrid OpenMP+MPI.

Poisson solver available.

Approach: domain decomposition, number of parcels per subdomain
will vary (simplicity versus optimal load balancing).

Lagrangian diagnostics can feed back into standard MONC.

Component testing using simplified code.

Böing, Gibb, Dritschel, et al. MPIC November 13, 2019 15 / 35



PMPIC

Implementation of MPIC in MONC’s framework.

Based on stripped version of MONC core.

Not compatible with other MONC components (parcels in model
state, RK4 time step, different equations, non-staggered grid).

But uses (FFTs, grids) and extends (parcel parallelism) MONC
infrastructure.

GIT repository + makefile.

Böing, Gibb, Dritschel, et al. MPIC November 13, 2019 16 / 35



Design choices

Data held in arrays, rather than parcel-types (more difficult
halo-swap, but efficient).

Böing, Gibb, Dritschel, et al. MPIC November 13, 2019 17 / 35



Design choices

New group type: RK4 (not all operations substepped).
Higher memory footprint: work in progress on low-storage variant.

Binary dumps (parcels/grids) and NetCDF (optional, grids only so
far), instead of IO-server. Memory requirements of main code.

Böing, Gibb, Dritschel, et al. MPIC November 13, 2019 18 / 35



Halo-swapping

Parcel halo-swap needed testing.
In particular: backfill (parcel deletion/creation).

Modified grid halo-swap in solver. Decision to write new simple
halo-swapper for grids.

Halo-swapping also comes into parcel mixing. Systematic parcel
creation/removal tests.

Böing, Gibb, Dritschel, et al. MPIC November 13, 2019 19 / 35



Numerics

4th order compact central differencing in tridiagonal solver (David
Dritschel).

Böing, Gibb, Dritschel, et al. MPIC November 13, 2019 20 / 35



Performance: single node

Overall performance of new code on single core: 1.6 times faster.

MPI scaling hindred by load imbalance.

OpenMP not scaling well (tune chunk size/try static arrays?).

Böing, Gibb, Dritschel, et al. MPIC November 13, 2019 21 / 35



Performance

Böing, Gibb, Dritschel, et al. MPIC November 13, 2019 22 / 35



Performance: large simulations

Böing, Gibb, Dritschel, et al. MPIC November 13, 2019 23 / 35



Benefits

First use of this type of model in atmospheric community.

Massively parallel MPIC will make it more attractive for other
problems, e.g. ocean mixed layer, density-laden flows.

Alternative approach for MONC community.

Could provide basis for Lagrangian diagnostics, currently lacking in
MONC.

BSD license.

Böing, Gibb, Dritschel, et al. MPIC November 13, 2019 24 / 35



PMPIC code repository

Example usage:

mpiexec -n 2 monc --config=config.mcf

Dependencies:

MPI
FFTW
NetCDF (optional)

Compilers tested:

GNU (on laptop and ARCHER)
Cray (on ARCHER)

Böing, Gibb, Dritschel, et al. MPIC November 13, 2019 25 / 35



Default test case is a spherical moist and warm thermal in a
neutrally-stable boundary layer overlaid with a stably-stratified atmosphere.

z
b
 (mixed layer height)

z
c
 (condensation)

z
d
 (dry neutral buoyancy)

z
m
 (moist neutral buoyancy)

q (environment)

q,b (thermal)

he
ig

ht

b (environment)

Böing, Gibb, Dritschel, et al. MPIC November 13, 2019 26 / 35



Running PMPIC

Running pmpic should be as simple as executing:

[mpiexec/aprun ...] /path/to/monc --config=[config file]

The config file controls which components are run (and in what order) and
also runtime parameters. There is also a global config file which contains
basic settings required for MONC to operate. This shouldn’t be edited
unless you know what you’re doing.

The config file and global config should be placed in the working directory.

The default case is small and should be able to run on a laptop in around
a minute or less.

Böing, Gibb, Dritschel, et al. MPIC November 13, 2019 27 / 35



Further information

When the code is slow, please first try running with

export OMP_NUM_THREADS=1

as by default OpenMP uses all cores on your system, so you may end out
running many more threads+processes than you have cores.

A list of components is provided on the PMPIC wiki

Böing, Gibb, Dritschel, et al. MPIC November 13, 2019 28 / 35



Subgrid visualisation

Figure : Comparison of the buoyancy in the y − z plane for a 323 grid cell
simulation constructed from the gridded values (left) and from the parcels (right).
It can be seen that images constructed from the parcels have considerably more
detail as they are able to resolve sub-gridcell structure.

Böing, Gibb, Dritschel, et al. MPIC November 13, 2019 29 / 35



Included scripts

display grid.py: displays a field (buoyancy by default)
display parcels.py: renders a field based on a Gaussian kernel
planner.py: calculates the approximate memory footprint of PMPIC (total
and per process)
timing.py: reads previously created timing data (need to specify this
beforehand in MONC configuration file)
visualise.py: older visualisation routine

Böing, Gibb, Dritschel, et al. MPIC November 13, 2019 30 / 35



Writing your own initial condition component

PMPIC comes with two initial condition components

basic parcelsetup component (which places parcels uniformly in
space but does not assign any values to them)

plume parcelsetup component which sets up the initial condition
used here.

To write your own initial condition component, it is easiest to create a
copy of the basic parcelsetup directory in components/ and call it
something else (let’s say my parcelsetup). Change into this directory
and alter the name of src/basic parcelsetup.F90 to
src/my parcelsetup.F90. Also remember to modify the makefile in this
directory to point to the newly renamed file.

Now to edit my parcelsetup.F90. First of all, change the module name
to my parcelsetup mod. Change the
basic parcelsetup get descriptor function to (next slide)

Böing, Gibb, Dritschel, et al. MPIC November 13, 2019 31 / 35

https://rmets.onlinelibrary.wiley.com/doi/10.1002/qj.3319


type(component_descriptor_type) function my_parcelsetup_get_descriptor()

my_parcelsetup_get_descriptor%name="my_parcelsetup"

my_parcelsetup_get_descriptor%version=0.1

my_parcelsetup_get_descriptor%initialisation=>initialisation_callback

end function my_parcelsetup_get_descriptor

Now you can go and edit the subroutine initialisation callback to
put in the initial conditions you want.

To enable this component, alter your config file to have the line
my parcelsetup enabled=.true. (ensuring that the other parcelsetup
components are disabled).

After recompiling you should now be able to use your new component!

Böing, Gibb, Dritschel, et al. MPIC November 13, 2019 32 / 35



NetCDF libraries

We have made output to NetCDF available in PMPIC. This requires a
version of NetCDF with parallel NetCDF support

These libraries are available under ARCHER as the cray-hdf5-parallel and
cray-netcdf-hdf5parallel modules. Note that if you change compiler
environment (compilation has been tested with the GNU compiler on
ARCHER) you may need to unload and then reload the modules.

See PMPIC wiki for details on local compilation.

Böing, Gibb, Dritschel, et al. MPIC November 13, 2019 33 / 35



Conclusions

eCSE outcome: MPIC model that scales on thousands of cores.

Improving scalability: analyse issues with OpenMP, replace
FFT-derivatives by compact finite differencing where possible
(currently 18 FFTs per time step).

Böing, Gibb, Dritschel, et al. MPIC November 13, 2019 34 / 35



Future plans for MPIC

Developing a full cloud model: realistic thermodynamics and
precipitation, radiation.

More flexible boundary conditions, in particular for momentum.

Work on marginally resolved and subgrid-scale dynamics to improve
mixing representation (convergence).

Exploitation of vorticity diagnostics and Lagrangian analysis.

Image: NASA Johnson Space Center (public domain).

Böing, Gibb, Dritschel, et al. MPIC November 13, 2019 35 / 35


	Moist Parcel-in-Cell code: overview
	The Met Office NERC Cloud model (parallelisation framework)
	Design and performance
	Repository, installation, adding components
	Conclusions and future work

