Welcome

Modern Fortran

Virtual tutorial starts at 15.00 BST

I

. oN VE'?.r
e CC i piiq |
&~ 4 -
Q:{\ A Z

A LS

5
Q N
DTN

Modern Fortran:
F77 to FO0 and beyond

Adrian Jackson
a.jackson@epcc.ed.ac.uk

Y @adrianjhpc

Fortran

Ancient History (1967)

Name comes from FORmula TRANSslation
Fortran 66 was the first language to have a standard

Fortran 77 (1978)

New standard to overcome divergence in different implementations

Fortran 90 (1991)

Major revision — much improved programmability
Added modules, derived data types, dynamic memory allocation, intrinsics
But retained backward compatibility!

Fortran 95 (1997)

Minor revision but added several HPC related features; forall, where, pure, elemental, pointers

Fortran 2003 (2004)

Major revision: OO capabilities, procedure pointers, IEEE arithmetic, C interoperability,

Fortran 2008 (2010)

Minor revision: co-arrays and sub modules

Fortran 2018 (2018) (previously know as Fortran 2015)

Minor revision: planned improvements in interoperability between Fortran and C, parallel features, etc..

archenr \epCC

FO0 text/character changes

Names (variables, program units, labels) maximum size increased:
Up to 31 characters, only 6 character in F77

Comments start with !
Also allows inline comments:i.e.a = b + ¢ ! My sum
F77. c orCincolumn 1

Free-format
Up to 132 character lines
No specification about where on a line characters are
Spaces not allowed inside constants or variable names
fred = 1 00 42 X
fred = 10042 v
Continuation of lines done using & at end of line
a =>b + &
c ! My sum
Breaking character strings requires & at end of line and the beginning of the next line
mystring = ‘hello&
& and welcome’
Can use “” and '’ for character strings (allows “you’ re an idiot” type strings)

archenr \epCC

I
Typing

IMPLICIT NONE

Instruct the compiler to disable implicit typing for a program unit
Implemented in most F77 compilers prior to F90
Required for main program, subroutines/functions (unless in
contains), and modules

New variable definition format
: : used to separate attributes from variable names

integer, parameter :: bob = 6
rather than

integer bob

parameter (bob=6)

epcc

I
Typing

iIntents to provide compiler checking and optimisation
options
intent (in): Variable data will be used inside the routine but not
modified
intent (out) : Variable will be modified in the routine but the initial
value will not be used
intent (inout): Variable initial data required and will be modified
In the routine

epcc

e
Loops

do loop terminated by end do
do i=1,10
X =Xty

end do

rather than

do 10 1i=1,10
10 x=x+ vy

cycle keyword will skip a loop iteration
do i=1,10

if(i .eg. 5) cycle

X =Xty
end do

exit keyword will finish the loop
do i=1,10

X =Xty

1f (x>100) exit
end do

archenr

epcc

-
Dynamic memory

Dynamic memory supported by allocatable attribute, allocate,
deallocate and allocated routines
Automatically deallocated when out of scope unless SAVEd

real, allocatable :: charles(:, :)
integer :: myerror

allocate (charles (1000,10))

if(.not. allocated(charles)) then
allocate(charles (1000,10),stat=myerror)
if (myerror /= 0) stop

end 1f

deallocate (charles)

©)>-oner

epcc

Portable precision

F77 defined variable precision by specify the number of bytes
data stored in:
integer*4, real*8
F90 introduces more control, can specify required variable
range
SELECTED INT KIND: define the minimum number of decimal
digits required
SELECTED REAL KIND: define minimum number of decimal
digits and exponent range
INTEGER, PARAMETER :: large int = SELECTED INT KIND (9)
INTEGER (KIND=large int) :: 1
large int is non-negative if the desired range of integer
values, -10° < n < 10° can be achieved

epcc

R
Portable precision

INTEGER, PARAMETER :: small real = SELECTED REAL KIND(6,37)

small real is non-negative if the desired exponent range of real values, -1037 <
n < 1037 can be achieved, and the desired number of decimal digits, . 000001 ,can
be achieved

selected real kind returns:

-1 if the precision cannot be achieved
-2 if the range cannot be achieved

REAL (KIND=small real) :: X

real (small real), allocatable :: my data(:,:)

Constants can be specified with a kind type (like 7.d0)
INTEGER (KIND=large int) :: I = 7 large int
REAL (KIND=small real) :: x = 5.0 small real

archenr

epcc

Array operations

Fortran can operate on whole arrays
whole or subsections

a = 0.0 | scalar conforms to any shape
b =c¢c+ d !b,c,dmustbe conformable

e = sin(f) +cos(g)landsomuste, £, g

Subsection selection:

REAL, DIMENSION(1:15) :: A

A(:) whole array
elements mto 15 inclusive
elements 1 to n inclusive
elements m to n inclusive
elements 1 to 15 in steps of 2
m:m) 1 element section of rank 1

WHERE (P > 0.0) P = log(P)

epcc

Array operations

Range of array intrinsics
WHERE (P > 0.0) P = log(P)
WHERE (P > 0.0)

X =X + log(P)

Y =Y - 1.0/P
END WHERE
nonnegP = COUNT (P > 0.0)
sumP = SUM(P)
P = MOD (P, 2)

epcc

-
Modules

Constants, variables, and procedures can be encapsulated in
modules for use in one or more programs.

A module is a collection of variables and procedures
module sort

implicit none

! variable specifications

contains
! procedure specifications
subroutine sort subl ()

end subroutine sort_subl

end module sort

Variables declared above contains are in scope
Everywhere in the module itself
Can also be made available by using the module

©)>-oner

epcc

Points about modules

Within a module, functions and subroutines are known
as module procedures

Module procedures can contain internal procedures
Module objects can be given the SAVE attribute

Modules can be USEd by procedures and modules

Modules must be compiled before the program unit
which uses them
This can complicate your build process

Some use scripts or small applications to work out the correct
compile order

epcc

e
Using modules

Contents of a module are made available with use :

PROGRAM TriangleUser
USE Triangle Operations
IMPLICIT NONE
REAL :: a, b, c

The use statement(s) should go directly after the program
statement

implicit none should go directly after any use statements

There are important benefits

Procedures contained within modules have explicit interfaces
Number and type of the arguments is checked at compile time
Not the case for external procedures

Can implement data hiding or encapsulation
via public and private statements and attributes

epcc

e
Derived data types

FO0 allows the use of derived data types

Groups of data structures

Enables building of more sophisticated types than the intrinsic
ones, i.e. linked data structures, lists, trees etc...

Imagine we wish to specify objects representing

persons

Each person is uniquely distinguished by a name and room
number
We can define a corresponding “person” data type as follows:
type person
character (len=10) :: name
integer :: officeNumber
end type person

epcc

e
Derived data types

To create a derived type variable you use the syntax:
type (person) :: fred, me

Initialisation (construction) possible as well:

fred = person(Fred Jones’, 21)

fred is a variable containing 2 elements: name,
officeNumber

Elements (individual components) of derived type can
be accessed by component selector: %
fredsname ! contains the name of you

fred3officeNumber ! contains the age of you

epcc

-
Supertypes

Derived type can be used in other derived types:

type corridor
type (person) ,dimension(:) ,allocatable :: rooms(:)
integer : : numberOfRooms
end type corridor

type (corridor) :: al

al%rooms (1) $name
al%$numberOfRooms = 10

epcc

-
Operators

Comparison operators:
New characters for operators, either can be used, can be mixed

At = < ! less than

.le. = <= ! less than or equal
.gt. = > ! greater than

.ge. = >= ! greater than or equal
.eq. = o ! equal

.ne. = /= ! not equal

- Logical variables should be compared with

.eqv.
.neqv.

epcc

Operator overloading

Using interfaces it is possible to overload operators (or define
your own operators) as well:

implicit none

interface operator (+)
module procedure real sum, int sum
end interface

Only really makes sense if you define your own operators or
datatypes

Can’t override existing definitions (the above example isn’t actually

allowed)
epCceC

e
Psuedo OO programming with F90

Modules and interfaces allow semi-OO programming
Encapsulation of data and functions with modules

Controlled access to data or functions with private and public
keywords

Polymorphism with interfaces
Operator overloading with interfaces

Does not provide full OO functionality but can be very
powerful

Often enough functionality with this without using the F2003
additions

epcc

-
Advice for moving to FO0 from F77

Text changes required
Comments ¢ -> !

Continuation lines & at column 6 becomes & at end of the line

Implicit none
Make sure typing is explicit
If code uses implicit typing this require lots of variable declarations
Rename variables if you are declaring them for the first time
Use kind parameters if you are declaring new variables
Use modules
Split code into sensible groupings
Convert groupings into modules
Use those modules where required
Common blocks to modules
Files to modules

epcc

-
Advice for moving to FO0 from F77

Using modules
Make module private by default
Only use the components you require

Convert do loops
Rename variables

Declare variables using module defined kind parameters
Enables easy change of precision if required

Move to dynamic allocation from static
Consider array syntax for new code development

epcc

e
Interoperable code F77 and FO0

Occasionally it's necessary to have code that works in
both F77 and F90

I.e. include file for library

Can be done by including continuation characters in
correct place

& at the end of the line but after the 72 character (F90)

& at the beginning of the line in column 6 (F77)

No inline comments

Comment character ! in 15t column
Not strictly F77 compliant but compilers will generally accept this

epcc

Newer features

C interoperability
New module ISO C BINDING
Has the kind types for C intrinsic variables
Defined types and structures can be inter-operable:

TYPE, BIND(C) :: matrix

END TYPE matrix

Some restrictions on what can be in the types or structures
Same can be done for procedures with defined interfaces

epcc

Newer features

Object oriented programming

Modules and derived types can be used to make “semi-classes”
Encapsulation of data and functions with modules
Controlled access to data or functions with private and public keywords
Polymorphism with interfaces
Operator overloading with interfaces

F2003 introduces further OO functionality

Type bound procedures

module building
implicit none

integer, parameter :: MAXLEN = 100
type person
character (MAXLEN) :: name
integer :: officeNumber
contains
procedure, nopass :: getName
procedure :: setName
procedure :: getOfficeNumber
procedure :: setOfficeNumber

end type person
end module building

archenr

epcc

Newer features

Class variable passed to type bound procedures

Allows polymorphic procedures
Type bound procedures must take a class variable
Variable name is not prescribed (self is not a keyword)
Automatically passed
Allows for data polymorphism
function getName (self)
class (person), intent (inout):: self
character (MAXLEN) :: getName
getName = self%name
end subroutine
Allowed unlimited polymorphic type
class (*)
Can define abstract classes, extend classes, overload procedures, etc...

epcc

Class variables

If allocatable

Either type needs specified:
class(*) ,allocatable :: fred
allocate (person: :fred)

Or source type needs specified:
person :: bob
class(*),allocatable :: fred
allocate (fred, source=bob)

In this case the allocation is made and the values copies into the new
object

epcc

e
Type guarding

Type inquiry/type guarding is possible
type 1s

Type of object is the specified type
class 1s

Class of the object is the same as the specified class or an extension of that
class

select type (bob)
type 1s (manager)
print *, ‘This 1s a manager’
class 1s (person)
print *, ‘This could be a manager or person’
class default
print *, ‘Unknown type used’
end select

epcc

Type comparison functions

Two new intrinsic functions to inquire about types:

EXTENDS TYPE OF (X,Y)

Returns true if the type of X is the same as, or extends the type of
Y

Some subtleties if Y is unallocated unlimited polymorphic type

SAME TYPE AS (X,Y)
Returns true if the type of Y is the same as the type of X

epcc

.
Overloading in F2003

generic keyword specifies polymorphism for type-bound
procedure
polymorphism without interface block
Without this, type-bound procedures only resolve to a single method
GENERIC [, access-spec | :: generic-spec =>
binding-namel [, binding-nameZ]...
type maths functions
contains
procedure real sum
procedure int sum
generic :: my sum => real sum, int sum
end type

epcc

.
Overloading pre F2003

Generic interfaces can enable procedure overloading, but are not bound to a
specific type:
module maths functions
interface my sum
module procedure real sum
module procedure int sum
end interface
contains
function real sum (a, b)
implicit none
real, intent(in) :: a,b
real sum = a + b
end function real sum

function int sum (a, b)
implicit none
integer, intent(in) :: a,b
int sum = a + b
end function int sum
end module

archenr \epCC

Class constructor

Can specify a constructor
Using interface with same name as the derived type

public :: person

Lype person
character (MAXLEN) :: name
integer :: officeNumber

contains
procedure, public :: getName
procedure, public :: setName
procedure, public :: getOfficeNumber
procedure, public :: setOfficeNumber

end type person
interface person

module procedure initialise_person
end interface

Can be overloaded
Not mandatory

. archenr

epcc

Class destructor

final keyword can be used to define procedure(s) to be called
on object destruction

public :: person

type person
character (MAXLEN) :: name
integer :: officeNumber

contains
procedure, public :: getName
procedure, public :: setName
procedure, public :: getOfficeNumber
procedure, public :: setOfficeNumber
final :: cleanUp

end type person
interface person

module procedure 1initlialise person
end interface

archenr

epcc

Abstract classes

Can define abstract classes and deferred
procedures

Define data

Define procedures and interfaces

Define implement procedures

Define procedures to be implement by further classes

Abstract class cannot be instantiated or allocated

Can be used for class declaration in methods
Important for type hierarchies

epcc

Newer features

Pointers
Alias to variables

Co-arrays

Parallel programming using partitioned global address space
(PGAS) approach

Recursive procedure support
select...case... functionality

epcc

Summary

Moving from F77 to F90+ is beneficial both in terms of
functionality and easy of correctness
checking/programmability etc...

Well engineered programs can be written in F90/95 that
satisfy most requirements for scientific programming

F2003 and beyond provides a wider range of functionality
that may be useful, particularly for re-use

Performance does not have to be significantly impacted
by such functionality, depending on the compiler

S
<

epcc

~
o
<

Good bye

Virtual tutorial has finished
Please check here for future tutorials
and training
http://www.archer.ac.uk/training
://lwww.archer.ac. ukltralnlnglwrtuall

epccl @

