
TPLS 3.0 and Its
Use of PETSc

David Scott
Edinburgh Parallel Computing Centre

Contributors
• Iain Bethune
• Toni Collis
• Lennon O’Naraigh
• David Scott
• Peter Spelt
• Prashant Valluri

Funded by EPSRC through the eCSE programme

Portable, Extensible Toolkit for Scientific Computation,
PETSc: https://www.mcs.anl.gov/petsc

2

Evaporating	droplets
J.	Fluid	Mech.	(2015)

History of Public Releases
Year Version Notes
2013 1.0 Hand coded (generally J-SOR)

solvers except for the (PETSc)
pressure solver.
Serial I/O.

2015 2.0 Parallel I/O (NetCDF).
Introduced configuration files.
2D domain decomposition.

2017 3.0 3D domain decomposition.
PETSc solvers available for the
the momentum calculations.
Different densities for the
component fluids.

3

TPLS 3.0

• Available from Sourceforge:
https://sourceforge.net/projects/tpls/

under a BSD-style licence.

4

TPLS 3.0 – Density Contrast Flows

5

• Rayleigh – Taylor instability
- Two layers of liquid with the upper being the denser.

• Stably stratified, parallel, two-phase flows
- Two layers of fluid with the upper being the less dense.
- The fluids are flowing in the same direction.

• Characteristics of the simulations:
- Flows involving many length and time scales.
- Flows with sharp changes in interfacial topologies.
- Transient three-dimensional simulations required over long periods

of time

• Require scalable code run at very high resolutions

TPLS 3.0: The Equations

6

Two-phase, incompressible, Navier–Stokes equations with
interface capturing.

TPLS 3.0: The Technicalities

7

Marker-and-cell discretisation: pressures, densities, viscosities and φ at
cell centres, velocities at cell faces.

Finite volumes, with flux-conservative differencing for the momentum
equation.

Momentum step: centred differences for the convective derivative,
Crank-Nicholson treatment for diffusion, 3rd order Adams-Bashforth for
the time evolution.

Projection method: momenta are updated first, followed by a correction
step involving a pressure update, thereby enforcing incompressibility.

The levelset function, φ, is carried with the flow (3rd order WENO) but is
corrected at each time step (‘redistancing’).

TPLS 3.0: Rayleigh-Taylor Instability

8

• Heavy fluid sitting on top of a light fluid (gravity acting
downwards)

• System starts from rest with a sinusoidal perturbation to
the interface

• Heavy fluid accelerates downwards forming complicated
interfacial structures due to rollup of vorticity

• System parametrised by the Atwood number

• In simulations,

TPLS 3.0: Rayleigh-Taylor Instability

9

See Z. Solomenko et al. (2017) Int J Multiphase Flow, 95, 235.

TPLS 3.0: Stratified Flows

10

• A pressure-driven channel flow with two
stably stratified phases

• At high flow rates (Reynolds numbers),
an unstable equilibrium sets in

• Interfacial waves develop and can
evolve to breaking waves, ligaments,
billows, droplets etc.

• The density ratio, r (bottom phase vs
top phase) is a key parameter

TPLS 3.0: Stratified Flows

11

How to Use TPLS
• Describe the initial configuration

• initial_config.opt
• Generate the initial configuration

• run ./create_initial_configuration
• Configure how the program works (non-PETSc options)

• tpls_config.opt
• PETSc run-time configuration

• .petscrc

12

initial_config.opt
• ## Domain grid
• # Number of grid points in X (l), Y (m) and Z (n) directions.
• maxl 257
• maxm 145
• maxn 153

• ## Interface detection method.
• # Options:
• # lsm - level-set method (default)
• # dim - diffuse interface method
• idm lsm

• ## Flow type.
• # Options:
• # channel - channel flow
• # rti - Rayleigh Taylor Instability
• flow_type channel

13

initial_config.opt (cont.)
• ## Fluid flow

• # Reynolds number.
• re 1.0

• # Viscosity and density of the lower fluid.
• mu_minus 1.0
• rho_minus 1.0
• # Viscosity and density of the upper fluid.
• mu_plus 1.0
• rho_plus 3.0

• # Interface height, or height of lower liquid layer, expressed as
• # a proportion where 0 <= height <= 1.
• height 0.5

14

initial_config.opt (cont.)
• # Pressure gradient.
• dpdl -1.0

• # Gravity.
• Grav 1.0
• gz -1.0

• # Surface tension scaling parameter.
• scap 0.01

• # Time step (>0).
• dt 0.0001

• # Smooth width scale factor.
• smooth_width_scale 1.5

15

tpls_config.opt
• ## Process grid
• # Number of processes in the X, Y and Z dimensions, which defines the
• # process grid which overlays the domain grid.
• # The following conditions need to be respected:
• # Number of processes available = num_procs_x * num_procs_y * num_procs_z
• # num_procs_x is a divisor of (maxl - 1)
• # num_procs_y is a divisor of (maxm - 1)
• # num_procs_z is a divisor of (maxn - 1)
• # num_procs_x >= 1
• # num_procs_y >= 1
• # num_procs_z >= 1
• # TPLS will raise an error if these conditions do not hold.
• num_procs_x 16
• num_procs_y 6
• num_procs_z 8

16

tpls_config.opt (cont)
• ## Selection of PETSc or original equation solvers.
• # T or F for PETSc or original.
• petsc_solver_u T
• petsc_solver_v T
• petsc_solver_w T
• petsc_solver_p T

• ## Is a solver to be monitored?
• # T or F.
• u_monitoring_on F
• v_monitoring_on F
• w_monitoring_on F
• p_monitoring_on F

17

tpls_config.opt (cont)
• ## Original momentum equation solver configuration
• # Number of iterations in solvers for u, v and w velocities (>= 1).
• mom_u 30
• mom_v 30
• mom_w 30
• ## Level-set equation solver configuration
• # Number of iterations in solver (>= 1).
• levelset 10

• # Maxu
• maxu 10.0

18

tpls_config.opt (cont)
• ## TPLS operation
• # PHI channel .dat file output frequency (>= 1).
• phi_dat_frequency 1000
• # UVW channel .dat file output frequency (>= 1).
• uvw_dat_frequency 1000
• # Backup channel .dat file output frequency (>= 1).
• backup_frequency 1000
• # Backup files in netCDF hdf5 format (= T or F).
• backup_hdf5_format T
• # Number of timesteps (>= 1).
• num_timesteps 1000

• ## DIM equation solver configuration
• # Number of iterations
• max_iteration_dim 18

19

Run-Time Configuration of PETSc
.petscrc

• -u_ksp_rtol 0.00000007
• -u_ksp_final_residual
• -v_ksp_rtol 0.000001
• -v_ksp_final_residual
• -w_ksp_rtol 0.0000002
• -w_ksp_final_residual
• -p_ksp_rtol 0.00009
• -p_ksp_type minres
• -p_pc_type sor
• -p_pc_sor_omega 1.5
• -p_ksp_final_residual

• Note that one can configure the PETSc (Krylov) solvers individually through a prefix to
the configuration options. For example the generic option ksp_rtol becomes u_ksp_rtol,
etc. As we shall see, the prefixes are specified in the code.

20

Why Use PETSc
• PETSc provides support for structured grids.

• call DMDACreate3d(PETSC_COMM_WORLD, &

• DM_BOUNDARY_PERIODIC, &

• DM_BOUNDARY_PERIODIC, &

• DM_BOUNDARY_NONE, &

• DMDA_STENCIL_BOX, &

• global_dim_x, global_dim_y, global_dim_z+2, &

• num_procs_x, num_procs_y, num_procs_z, &

• dof, stencil_width, &

• petsc_x_lengths, &

• PETSC_NULL_INTEGER, &

• petsc_z_lengths_p, &

• da_s, ierr)

• This creates da_s which may then be used to create PETSc vectors.

21

Why Use PETSc (cont.)
• Two sorts of array may be created: global, distributed arrays and local arrays.

• call DMGetGlobalVector(da_s, pres_vec, ierr)

• call DMGetLocalVector(da_s, pres_lvec, ierr)

• A local vector includes room for the appropriate ghost (halo) points.

• It is simple to populate a local vector (including its halo points) given a global vector.

• call DMGlobalToLocalBegin(da_s, pres_vec, INSERT_VALUES, pres_lvec, ierr)

• call DMGlobalToLocalEnd(da_s, pres_vec, INSERT_VALUES, pres_lvec, ierr)

• Note the absence of MPI calls. The movement of data is done behind the scenes by
PETSc.

22

Why Use PETSc (cont.)
• Distributed matrices may also be created from DMs and used in conjunction with KSPs

to solve linear systems.

• call DMCreateMatrix(da_s, A, ierr)

• call compute_rhs_p(ksp_pres, b_vec, ierr)

• call compute_matrix_p(ksp_pres, A, A, ierr)

• call KSPSetOperators(ksp_pres, A, A, ierr)

• call KSPSolve(ksp_pres, b_vec, pres_vec, ierr)

• call MatDestroy(A, ierr)

This requires that a relationship has been established between the DM and the KSP.

23

Why Use PETSc (cont.)
• KSPs provide access to PETSc linear solvers. A KSP may be associated with a DM as

illustrated here.

• call KSPCreate(PETSC_COMM_WORLD, ksp_u, ierr)

• call KSPSetOptionsPrefix(ksp_u, 'u_', ierr)

• call KSPSetFromOptions(ksp_u, ierr)

• call KSPSetComputeInitialGuess(ksp_u, set_initial_guess_u,

PETSC_NULL_OBJECT, ierr)

• call KSPSetDM(ksp_u, da_u, ierr)

• call KSPSetDMActive(ksp_u, PETSC_FALSE, ierr)

• One can see that a prefix has been associated with the KSP so that it can have its own
run-time, configuration options.

24

TPLS 3.0 Performance

• 3D decomposition accelerates speed (2 x
TPLS2.0 on 1,536 cores)

• Krylov solvers do not lead to an increase in
performance but have different termination
criteria

• Density contrast doubles the execution time
• Refer to the eCSE report for full performance
analysis

25

Further Work

• Merge existing code on counter-current flows and
droplet formation.

• Include heat transfer, mass transfer with reaction
and interfacial phase change.

• Implement complex geometries.

26

