
Welcome!

Virtual tutorial starts at 15:00 GMT

Please leave feedback afterwards at:
www.archer.ac.uk/training/feedback/online-course-feedback.php

Introduction to using
Version Control with Git

ARCHER Virtual Tutorial
25/07/2018

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the
material under the following terms: You must give appropriate credit, provide a link to the
license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their permission
before reusing these images.

Outline
• Why version control?
• Why Git?
• Getting started with Git

• Concepts
• Basic workflow
• Gotchas / subtleties to keep in mind

• Git vs other version control tools
• Hosting & additional features (GitHub & GitLab)

• Forking & pull requests, issue tracking, tests
• Distributed workflows

Why version control?

Why version control?

initial_code
(v0.1)

code_that_works (v0.2)

code_faster (v0.3)

final_code (1.0)

Why version control?

initial_code

code_that_works

code_different_algorithm (D)

code_faster

code_uses_ext_lib (C)

code_Alice_new_functionality (A)

code_Bob_added_tests (B)

A+B?

A+B+C+D?

C+D?

Why version control?
Version control tools:
• Provide a framework to record meaningful information

about versions in a systematic way

• Allow you to revisit / recover past versions (history!)
• snapshot of a set of files captures interdependencies between files

• Automate the tracking of changes between versions

Why version control?
Version control tools:
• Facilitate reproducible research

• Mark results with the exact version of code used to generate
them, and make versions public

• Allow for easy duplication and synchronisation of files
across multiple locations
• Avoid error-prone manual transferring of file versions
• Work on different machines
• Help maintain backups of your data

Why version control?
Version control tools:

• Enable collaborative work on one or more of the same
files at the same time
• identify and combine contributions from different authors

• Are crucial for sustainable software development work

Why Git?

Why Git?

• Source: Google Trends

• cvs svn mercurial git

Why Git?
• Git dominates (open source) software development, and

software for computational science used in academia

• Many existing projects use Git – you are very likely to
encounter it

• Most popular online hosting and collaborative tools for
software development target Git
• GitHub, GitLab

Getting started with Git
Git concepts

Git concepts
• Repository (“repo”)

• A complete archive containing the full history of all recorded versions
of files (i.e. all snapshots taken), stored as the differences (“deltas”)
between successive versions

• Stored on your local machine (unlike Subversion/svn and cvs
repositories)

• Created using “git init”, or downloaded using “git clone”

• Commit (verb) (“git commit”)
• To record a snapshot of the current state of one or more files in the

repository

• Commit (noun)
• A snapshot of the kind described above

Git concepts
• Branch (noun)

• A series of successive snapshots (“commits”) of one or more files stored in the
repository

• All repositories contain at least one branch (the master branch)

• Branch (verb) (“git branch”)
• Creation of a new branch as an offshoot from the current branch
• New branch is initialised with copies of the current versions of all files in the current

branch
• Typically done in order to initiate development of a new feature
• Changes isolated in new branch – no other branches affected

• Merge (“git merge”)
• Combine two branches by merging one into the other
• Often done to integrate new feature developed on separate branch into the main

codebase (“master” or “dev” branch) following successful testing

Git concepts
• Working tree / working directory

• Your local view of the files in the repository
• Shell only shows files in one branch at any given time (GUI tools can

expand this view)
• Differs from the latest commit on the relevant branch in repository if

you’ve changed, added or removed files

• Check out (“git checkout”)
• Switch the working directory view from one branch to another

• Log (“git log”)
• A human-readable record of which files in the repository were changed

when, including (hopefully) meaningful comments by the author who
made the changes

Git concepts – interacting with remote repos
• Push (“git push”)

• Upload the commits stored in your local repository to a corresponding remote
repository

• Default behaviour is to push the current branch to corresponding remote
“upstream” branch

• Will not work if there are conflicts, will then need to pull first (see below) and
push once conflicts resolved

• Pull (“git pull”)
• Download commits from a remote repository and merge them into your local

repository
• Default behaviour is to pull from the remote branch corresponding to the

current branch, and merge into the current branch
• Actually consists of two sub-commands: “git fetch” and “git merge”
• Any conflicts become apparent and will need to be resolved

Getting started with Git
Basic workflows

Basic workflows – private repo
To create and maintain your own local repository:
• git init
• git add file1 file2
• git commit –m “Added initial versions of files”

• Modify/add new files and repeat:
• git add modified_files newfiles
• git commit –m “Description of changes”

• Etc.

Basic workflows – shared repo
To develop a new feature on a shared software project as a
member of the development team:
• Clone project repository locally (assume repository lives on

GitHub or GitLab):
• git clone repository_URL

• Create a new branch for your feature:
• git branch myFeature

• Switch the local working directory view to that branch:
• git checkout myFeature

• Modify/add files and commit these
• Push changes to the original remote (origin) repo:

• git push

Basic workflows – shared repo
Once feature has been developed and tested successfully, want to
integrate it into the main code for general release:
• Need to perform the merge locally
• First need to make sure our destination branch (e.g. “master”) is up to

date:
• git checkout master
• git pull

• Then merge our feature branch into master:
• git merge my_feature

• After resolving any conflicts, push the result to share with
collaborators / the world:
• git push

• Note: it is risky to merge directly into master branch, as conflict resolution
may get messy. Most development workflows merge into intermediary
development branches instead

Getting started with Git
Gotchas / subtleties to keep in mind

Gotchas / subtleties to keep in mind
• Git has the notion of the “index”

• A staging area (cache) listing files that are due to be committed
• Existing tracked files that are modified need to be added explicitly to the index every time they

are modified to make sure they are included in a commit
• Show using “git status”

• When in doubt, orient yourself with git status
• This shows the current branch, the index, and how the current state of the working tree

compares to the repository

• When you create a new branch locally that you intend to push to a remote
repository, you will need to use the --set-upstream or --track option (see the
relevant man page, git branch --help or git push --help)

• HEAD
• This is a reference to the most recent commit on whatever branch is currently checked out

Git vs other version control
tools

Git vs other version control tools
• Git is an example of distributed / decentralised version

control (same as Mercurial) – everybody has a local
repository

• Older tools (CVS, Subversion/svn) are centralised – there
is only one copy of the repository, stored on a server –
everybody has local working copies

• Git has a much greater emphasis on / efficiency using
branches à more complex workflows

Distributed version control
Each user has their own repository copy stored locally
Central server is optional (in practice often useful)

Alice

Bob

Carol

Dave

Distributed version control
New users clone, i.e. copy, an existing repository
• Typically from a central server but can in principle
copy from each other

Alice

Bob

Carol

Dave

Distributed version control
Users make changes in their working copy and commit this
to their local repository è repositories diverge

Alice

Bob

Carol

Dave

changes
(on master branch or new
branch)

changes
(on master
branch or new
branch)

Distributed version control
To combine content from different repositories someone
has to fetch other people’s changes into their working copy
and perform merges there

Alice

Bob

Carol

Dave

Dave pulls from Carol, merges his and
Carol’s changes

Distributed version control
To combine content from different repositories someone
has to fetch other people’s changes into their working copy
and perform merges there

Alice

Bob

Carol

Dave

Or: Alice pulls from Carol and Dave and
merges their changes

Distributed version control
Often use a central server for convenience:
Ø Clone

Server
Alice

Bob

Carol

Dave

Distributed version control
Ø Commit local changes

Server
Alice

Bob

Carol

Dave

changes

changes

Distributed version control
ØPush changes to server repository

Server
Alice

Bob

Carol

Dave

Distributed version control
If changes were made to master branch:
• First to commit to server (e.g. Carol) “wins”

Server
Alice

Bob

Carol

Dave

Distributed version control
If changes were made to master branch:
• Dave has to first pull Carol’s changes from server and merge

them with his changes on master branch

Server
Alice

Bob

Carol

Dave

Distributed version control
If changes were made to master branch:
• Dave then pushes result back to master branch on server

for others

Server
Alice

Bob

Carol

Dave

Distributed version control
If changes were made to new branches:
ØCarol and Dave push to different branches on server
ØAlice can pull Carol and Dave’s distinct branches

and merge them

Server
Alice

Bob

Carol

Dave

Distributed version control
ØAlice then pushes result back to a single branch on server

(can be master branch or another branch) for others

Server
Alice

Bob

Carol

Dave

Distributed version control
• Don’t need to be online to commit changes
• Changes can be committed privately

• Encourages committing early on
• Encourages branching to commit e.g. experimental code

• Full revision history (log & past versions) available locally
• Can adopt workflows other than centralised for combining

content from contributors
• Many common operations are faster because no

communication with server needed

Hosting & additional features

Hosting & additional features
Distributed version control systems became very popular
over the past ~8 years (Git born 2005)

A number of websites (GitHub, GitLab, Bitbucket, …) have
helped fuel this trend and exploit the potential of distributed
version control.

GitHub et al. offer repository hosting and management and
additional features that facilitate collaborative software
development

Hosting & additional features
Aditional features:
• Issue tracker to track and discuss bugs, feature requests etc.

tightly integrated with version control workflow
• “Pull request” mechanism allowing developers to clone (fork) a

repository, make changes, then suggest to the original owner
that these changes are integrated into the parent repository
• Useful for integrating contributions from unknown developers – no

need to give write access to original project repository
• Can set up pipelines / jobs that run server-side after a commit

is pushed – e.g. for continuous integration testing
GitLab site-installable web-based repository management
frameworks offer similar features.

Distributed workflows

Reproduced under CC Attribution Non-Commercial Share Alike 3.0 license
see http://git-scm.com/book/en/v2/Distributed-Git-Distributed-Workflows

Integration manager workflow:

Distributed workflows

Reproduced under CC Attribution Non-Commercial Share Alike 3.0 license
see http://git-scm.com/book/en/v2/Distributed-Git-Distributed-Workflows

“Dictator and lieutenants” workflow:

Final words
• Version control systems are not a magic bullet, but a

powerful tool

• You still need to think and decide how to manage your
work

• When working collaboratively, need to communicate

References

• https://oer.gitlab.io/oer-on-oer-infrastructure/Git-
introduction.html

• https://backlog.com/git-tutorial/

• Quick Introduction to Version Control with Git and Github:
• https://doi.org/10.1371/journal.pcbi.1004668

http://www.archer.ac.uk/training/

• Face-to-face courses
• timetable, information and registration
• material from all past courses

• Virtual tutorials
• timetable plus slides and recordings from past courses
• please leave feedback on previous tutorials after viewing material

Goodbye!

Thanks for attending
Please leave feedback at:

www.archer.ac.uk/training/feedback/online-course-feedback.php

