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Met Office NERC Cloud model (MONC)
• Uses Large Eddy Simulation for modelling clouds & 

atmospheric flows
• Written in Fortran 2003 due to scientist familiarity, uses MPI for 

parallelisation
• Designed to be a community model which will be accessible to be 

changed by non expert HPC programmers and scale/perform well.
• For use not just by Met Office scientists, but also those in the wider 

weather/climate community
• Replaces an older model, the 

LEM from the 1980s
• From 22 million to billions of 

grid points
• From 256 cores to many 

thousands 



A challenge for analysis

• With much larger domains (billions of grid points) how can 
we best analyse the data in a scalable fashion?
• Previous LEM model did this in line with computation, where the 

model would stop and calculate diagnostics before continuing with 
computation

• Could write to disk and analyse offline

Prognostics Diagnostics



In-situ approach
• Have many computational processes and a number of 

data analytics cores
• Typically one core per processor is dedicated to IO, serving the 

other cores running the computational model
• Computational cores “fire and forget” their data

• In-situ as raw data is 
never written out
• Would be too time 

consuming

• Avoids blocking the 
computational cores for 
analytics and IO



Existing approaches……
• Some existing approaches:

• XIOS
• Damaris
• ADIOS
• Unified Model IO server

• We need:
• To support dynamic time stepping
• Checkpoint-restart of the IO server itself
• Bit reproducibility
• Scalability and performance
• Easy configuration & extendibility
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Developed as part of MONC NERC initially funded 
development project. eCSE 05-12 added extra 
features & improved performance/scalability



<data-definition name=“data_parcel“ frequency=2>

<field name="u" type="array" data_type="double" size="z,y,x" collective=true/>

<field name="vwp_local" type="array" data_type="double" optional=true/>

</data-definition>

• Define the data from MONC
• Arrays, scalars or maps
• Mandatory (default) or 

optional
• A unique subset of a field 

(collective) or not. If collective 
need to provide sizes per 
dimension; z, zn, y ,x and 
qfields

• Integer, double, float, 
boolean, string
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• The IO server expects this data every “frequency” timesteps
• On registration the MONC process is told what data it should 

send & when. MONC process tells the IO server the sizes.



<data-handling>

<diagnostic field="VWP_mean"  type="scalar" data_type="double" units="kg/m^2">

<operator name="localreduce" operator="sum" result="VWP_mean_loc_reduced" 

field="vwp_local"/>

<communication name="reduction" operator="sum" result="VWP_mean_g" 

field="VWP_mean_loc_reduced" root="auto"/>

<operator name="arithmetic" result="VWP_mean"    

equation="VWP_mean_g/({x_size}*{y_size})"/>    

</diagnostic>

<data-handling>

• Define the diagnostics & its 
attributes
– Along with how to 

generate this diagnostic
• Organised as communication 

and operators
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User configuration - writing

<data-writing>

<file name="profile_ts.nc" write_time_frequency="100.0" title="Profile">

<include field="VWP_mean" time_manipulation="averaged" 

output_frequency=“2.0"/>

<include group="3d_fields" time_manipulation="instantaneous” 

output_frequency="5.0"/>

</file>

</data-writing>

<group name="3d_fields">

<member name="w"/>

<member name="u"/>

</group>
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Reuse of configuration

• Numerous existing XML configurations provided which can be 
included by the user

• Raises the issue of name conflicts
• Handled by the concept of namespaces

#include “checkpoint.xml”

#include “profile_fields.xml”

#include “scalar_fields.xml”
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Event handling
• The federators and their sub activities are event handlers

• Process events concurrently by assigning these to these from a pool
• Aids asynchronous data handling

• As soon as data arrives process it
• Internal state of event handlers needs protection (mutexes/rw locks) 
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• Challenge:
• Bit reproducibility
• For some handlers 

enforce a predictable 
order of processing 
events (based on 
model timestep.)

• Queue up out of order 
events 



Inter-IO communications challenge
• We promote 

asynchronicity and 
processing of events out 
of order where possible
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• Many inter IO 
communications involve 
collective operations (such as 
a reduction)
• We would like to use MPI, but issue order of collectives matters (i.e. if IO 

server 1 issues a reduce on field A and then B, then all other IO servers 
must issue reductions in that same order)

• But ensuring this would require additional overhead and/or coordination

• Solution: Abstract through active 
messaging 



Active messaging for inter IO comms
• These communication calls additionally provide

• UniqueID: matching collectives even if they are issued out of order
• Callback : Handling procedure called on the root when the data 

arrives
• inter_io_reduce(data, data_type, operation, 

root, uniqueId, callback)
• When this reduction is completed on the root, a thread is activated 

from the pool and calls the handling function (typically in the event 
handler)

• The Unique ID here is the concatenation of field name and timestep
• Built upon MPI P2P communication calls

call inter_io_reduce(data, type, SUM, 0, fieldname//”_”//timestep, handler)

subroutine handler(data, data_type, uniqueId)

………

end subroutine handler



Active messaging for synchronisation
• File writing is done by NetCDF

• But this is not thread safe, so crucial that only one thread per IO 
server process calls NetCDF functions concurrently

• Many NetCDF calls are collective (i.e. will block until called on all 
processes in the communicator.)

• NetCDF close is an example of this, where each process will block 
here until same call issued on all other processes
• Which we don’t want, as it will block access to NetCDF (and MPI)

• Active messaging barrier calls the handling function on 
every process once a barrier has been issued by all 
processes

call inter_io_barrier(filename_uniqueID, closeHandler)

subroutine closeHandler(uniqueId) 

………

call close_netcdf_file(………)

end subroutine closeHandler



Checkpointing
• We need to support checkpoint-restart of the IO server 

and analytics
• This is challenging due to the amount of asynchronicity, especially 

in the analytics

• Wait for all analytics 
to that point to 
complete and just 
store the state of the 
writer federator

• Two step process
• Walk the state to determine the amount of memory needed & lock it
• Serialise state into buffer, write this and unlock



Prognostic writing optimisation
• IO servers servicing many computational cores means 

that the data is naturally split up
• For prognostic field writes this can be a problem as it is very 

inefficient to do lots of independent writes to the file

• Want to perform minimal collective 
writes instead
• Search through the domain of local 

computational cores and merge data 
chunks together where possible to 
produce smaller number of large 
contiguous chunks

• Must do the same number of writes on 
every core, some perform empty writes 
if not enough chunks



Performance and scalability

• Standard MONC stratus cloud test case
• Weak scaling on Cray XC30, 65536 local grid points
• 232 diagnostic values every timestep, time averaged over 

10 model seconds. File written every 100 model seconds. 
Run terminates after 2000 model seconds.



IO overhead as a metric
• To measure the performance of the IO server and different 

configurations we adopt an overhead metric
• This is the time difference from the MONC communication that 

should trigger a write, to that write having being physically 
performed

Configuration Overhead

MPI serialised 8.92

MPI multiple 12.02

MPI serialised + 
hyperthreading

8.14

MPI multiple + 
hyperthreading

9.71



• Cray XC40, 64 core KNL 7210
• Same stratus test case. 3.3 million grid points 
• As MONC is not multi-threaded can we run one IO 

server per MONC on the hyper-thread?

Performance on the KNL
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Conclusions and further work
• We have discussed our approach for in-situ data analytics 

and IO
• Which performs and scales well up to 32768 computational cores
• As well as the architecture, challenges and lessons learnt from 

implementing this

• Extend the active messaging layer to build upon 
something other than MPI

• Plug in other writing mechanisms such as visualisation 
tools

• Extract this from MONC to enable others to integrate with 
their models


