
ARCHER webinar
In-situ data analytics for
atmospheric modelling

Nick Brown, EPCC
nick.brown@ed.ac.uk

Met Office NERC Cloud model (MONC)
• Uses Large Eddy Simulation for modelling clouds &

atmospheric flows
• Written in Fortran 2003 due to scientist familiarity, uses MPI for

parallelisation
• Designed to be a community model which will be accessible to be

changed by non expert HPC programmers and scale/perform well.
• For use not just by Met Office scientists, but also those in the wider

weather/climate community
• Replaces an older model, the

LEM from the 1980s
• From 22 million to billions of

grid points
• From 256 cores to many

thousands

A challenge for analysis

• With much larger domains (billions of grid points) how can
we best analyse the data in a scalable fashion?
• Previous LEM model did this in line with computation, where the

model would stop and calculate diagnostics before continuing with
computation

• Could write to disk and analyse offline

Prognostics Diagnostics

In-situ approach
• Have many computational processes and a number of

data analytics cores
• Typically one core per processor is dedicated to IO, serving the

other cores running the computational model
• Computational cores “fire and forget” their data

• In-situ as raw data is
never written out
• Would be too time

consuming

• Avoids blocking the
computational cores for
analytics and IO

Existing approaches……
• Some existing approaches:

• XIOS
• Damaris
• ADIOS
• Unified Model IO server

• We need:
• To support dynamic time stepping
• Checkpoint-restart of the IO server itself
• Bit reproducibility
• Scalability and performance
• Easy configuration & extendibility

Diagnostics
federator

Writer
federator

Time
manipulation

Time
averaged

Instantaneous

NetCDF file
writer

NetCDF
output file

Writer state
serialiserOperators

Inter IO
communications

External
API

Raw
MONC
data

Diagnostic data

Raw MONC data

Developed as part of MONC NERC initially funded
development project. eCSE 05-12 added extra
features & improved performance/scalability

<data-definition name=“data_parcel“ frequency=2>

<field name="u" type="array" data_type="double" size="z,y,x" collective=true/>

<field name="vwp_local" type="array" data_type="double" optional=true/>

</data-definition>

• Define the data from MONC
• Arrays, scalars or maps
• Mandatory (default) or

optional
• A unique subset of a field

(collective) or not. If collective
need to provide sizes per
dimension; z, zn, y ,x and
qfields

• Integer, double, float,
boolean, string

Diagnostics
federator

Writer
federator

Time
manipulation

Time
averaged

Instantaneous

NetCDF
file writer

NetCDF
output file

Writer
state

serialiser
Operators

Inter IO
communications

External
API

Raw
MONC
data Diagnostic

data

Raw MONC
data

• The IO server expects this data every “frequency” timesteps
• On registration the MONC process is told what data it should

send & when. MONC process tells the IO server the sizes.

<data-handling>

<diagnostic field="VWP_mean" type="scalar" data_type="double" units="kg/m^2">

<operator name="localreduce" operator="sum" result="VWP_mean_loc_reduced"

field="vwp_local"/>

<communication name="reduction" operator="sum" result="VWP_mean_g"

field="VWP_mean_loc_reduced" root="auto"/>

<operator name="arithmetic" result="VWP_mean"

equation="VWP_mean_g/({x_size}*{y_size})"/>

</diagnostic>

<data-handling>

• Define the diagnostics & its
attributes
– Along with how to

generate this diagnostic
• Organised as communication

and operators

Diagnostics
federator

Writer
federator

Time
manipulation

Time
averaged

Instantaneous

NetCDF
file writer

NetCDF
output file

Writer
state

serialiser
Operators

Inter IO
communications

External
API

Raw
MONC
data Diagnostic

data

Raw MONC
data

Diagnostics
federator

Writer
federator

Time
manipulation

Time
averaged

Instantaneous

NetCDF file
writer

NetCDF
output file

Writer state
serialiserOperators

Inter IO
communications

External
API

Raw
MONC
data

Diagnostic data

Raw MONC data

User configuration - writing

<data-writing>

<file name="profile_ts.nc" write_time_frequency="100.0" title="Profile">

<include field="VWP_mean" time_manipulation="averaged"

output_frequency=“2.0"/>

<include group="3d_fields" time_manipulation="instantaneous”

output_frequency="5.0"/>

</file>

</data-writing>

<group name="3d_fields">

<member name="w"/>

<member name="u"/>

</group>

Diagnostics
federator

Writer
federator

Time
manipulation

Time
averaged

Instantaneous

NetCDF
file writer

NetCDF
output file

Writer
state

serialiser
Operators

Inter IO
communications

External
API

Raw
MONC
data Diagnostic

data

Raw MONC
data

Reuse of configuration

• Numerous existing XML configurations provided which can be
included by the user

• Raises the issue of name conflicts
• Handled by the concept of namespaces

#include “checkpoint.xml”

#include “profile_fields.xml”

#include “scalar_fields.xml”

Diagnostics
federator

Writer
federator

Time
manipulation

Time
averaged

Instantaneous

NetCDF file
writer

NetCDF
output file

Writer state
serialiserOperators

Inter IO
communications

External
API

Raw
MONC
data

Diagnostic data

Raw MONC data

Event handling
• The federators and their sub activities are event handlers

• Process events concurrently by assigning these to these from a pool
• Aids asynchronous data handling

• As soon as data arrives process it
• Internal state of event handlers needs protection (mutexes/rw locks)

Process
event

Process
event

Request
thread

from pool

Event

Thread
pool

• Challenge:
• Bit reproducibility
• For some handlers

enforce a predictable
order of processing
events (based on
model timestep.)

• Queue up out of order
events

Inter-IO communications challenge
• We promote

asynchronicity and
processing of events out
of order where possible

Diagnostics
federator

Writer
federator

Time
manipulation

Time
averaged

Instantaneous

NetCDF
file writer

NetCDF
output file

Writer
state

serialiser
Operators

Inter IO
communications

External
API

Raw
MONC
data Diagnostic

data

Raw MONC
data

• Many inter IO
communications involve
collective operations (such as
a reduction)
• We would like to use MPI, but issue order of collectives matters (i.e. if IO

server 1 issues a reduce on field A and then B, then all other IO servers
must issue reductions in that same order)

• But ensuring this would require additional overhead and/or coordination

• Solution: Abstract through active
messaging

Active messaging for inter IO comms
• These communication calls additionally provide

• UniqueID: matching collectives even if they are issued out of order
• Callback : Handling procedure called on the root when the data

arrives
• inter_io_reduce(data, data_type, operation,

root, uniqueId, callback)
• When this reduction is completed on the root, a thread is activated

from the pool and calls the handling function (typically in the event
handler)

• The Unique ID here is the concatenation of field name and timestep
• Built upon MPI P2P communication calls

call inter_io_reduce(data, type, SUM, 0, fieldname//”_”//timestep, handler)

subroutine handler(data, data_type, uniqueId)

………

end subroutine handler

Active messaging for synchronisation
• File writing is done by NetCDF

• But this is not thread safe, so crucial that only one thread per IO
server process calls NetCDF functions concurrently

• Many NetCDF calls are collective (i.e. will block until called on all
processes in the communicator.)

• NetCDF close is an example of this, where each process will block
here until same call issued on all other processes
• Which we don’t want, as it will block access to NetCDF (and MPI)

• Active messaging barrier calls the handling function on
every process once a barrier has been issued by all
processes

call inter_io_barrier(filename_uniqueID, closeHandler)

subroutine closeHandler(uniqueId)

………

call close_netcdf_file(………)

end subroutine closeHandler

Checkpointing
• We need to support checkpoint-restart of the IO server

and analytics
• This is challenging due to the amount of asynchronicity, especially

in the analytics

• Wait for all analytics
to that point to
complete and just
store the state of the
writer federator

• Two step process
• Walk the state to determine the amount of memory needed & lock it
• Serialise state into buffer, write this and unlock

Prognostic writing optimisation
• IO servers servicing many computational cores means

that the data is naturally split up
• For prognostic field writes this can be a problem as it is very

inefficient to do lots of independent writes to the file

• Want to perform minimal collective
writes instead
• Search through the domain of local

computational cores and merge data
chunks together where possible to
produce smaller number of large
contiguous chunks

• Must do the same number of writes on
every core, some perform empty writes
if not enough chunks

Performance and scalability

• Standard MONC stratus cloud test case
• Weak scaling on Cray XC30, 65536 local grid points
• 232 diagnostic values every timestep, time averaged over

10 model seconds. File written every 100 model seconds.
Run terminates after 2000 model seconds.

IO overhead as a metric
• To measure the performance of the IO server and different

configurations we adopt an overhead metric
• This is the time difference from the MONC communication that

should trigger a write, to that write having being physically
performed

Configuration Overhead

MPI serialised 8.92

MPI multiple 12.02

MPI serialised +
hyperthreading

8.14

MPI multiple +
hyperthreading

9.71

• Cray XC40, 64 core KNL 7210
• Same stratus test case. 3.3 million grid points
• As MONC is not multi-threaded can we run one IO

server per MONC on the hyper-thread?

Performance on the KNL

437s
390s

317s

308s

322s

299s

Conclusions and further work
• We have discussed our approach for in-situ data analytics

and IO
• Which performs and scales well up to 32768 computational cores
• As well as the architecture, challenges and lessons learnt from

implementing this

• Extend the active messaging layer to build upon
something other than MPI

• Plug in other writing mechanisms such as visualisation
tools

• Extract this from MONC to enable others to integrate with
their models

