
Implementation of generic
solving capabilities in

ParaFEM
Mark Filipiak, EPCC, University of Edinburgh m.filipiak@epcc.ed.ac.uk
Francesc Levrero Florencio, University of Oxford
Lee Margetts, University of Manchester
Pankaj Pankaj, University of Edinburgh

eCSE

ParaFEM
26 April 2017 2

• Finite Element Method
• Open source library + ~70 mini Apps
• Parallel, scaling to 64,000 cores
• >1 billion degrees of freedom
• Used for teaching and research
• 1000+ registered on website
• ~1400 citations of text book

http://parafem.org.uk
http://www.amazon.com/Programming-Finite-Element-
Method-Smith/dp/1119973341

• In finite element modelling programs such as ParaFEM, the
step that takes the most time is the linear solve of the large,
sparse matrix equation

• A typical program in ParaFEM would be
Read in grid, material properties, BCs, loads
Create stiffness matrix K and vectors u, f
DO time step or load step
DO Newton-Raphson iteration

Set the entries in K and f
Solve Ku = f

END DO
END DO

FEM has a linear solver at its core
26 April 2017

stiffness displacement load

3

ParaFEM currently implements two parallel iterative linear solvers:
• Conjugate Gradient (CG), for elastic models
• BiCGStab(l), for plastic and flow models – slower than CG
both with Jacobi preconditioning

Adding a range of other solvers and preconditioners can give a better
match to the wide range of possible types of algebraic systems found in
FEA and shorter time to solution, e.g.,
• Parallel direct solvers can be faster than iterative solvers for smaller

systems
• The stiffness matrix in large strain solid mechanics simulations may

become symmetric indefinite in the post-buckling regime and
MINRES can be used instead of BiCGStab(l)

• Many other preconditioners can be used instead of Jacobi, for
example algebraic multigrid (AMG). These will reduce the number of
iterations of the solver but the each iteration will be slower – overall
the result is usually shorter time to solution

Linear solvers
26 April 2017 4

PETSc (http://www.mcs.anl.gov/petsc)

• Wide range of iterative linear solvers, preconditioners, but lots more
as well: non-linear solvers, time integration, mesh handling

• High level interface, e.g. basic objects include matrices (Mat) and
vectors (Vec)

• C with Fortran interface
• Interface to other libraries (Trilinos algebraic multigrid, hypre

algebraic multigrid and ILU, MUMPS and Super_LU direct solvers)

Trilinos (http://trilinos.org)

• Similar to PETSc in its range of solvers and tools
• C++; Fortran interface out-of-date, being re-written
• Interface to other libraries (PETSc, MUMPS, Super_LU)

Solver libraries
26 April 2017 5

‘Create stiffness matrix K’

‘Set the entries in K ’

Using PETSc directly
26 April 2017 6

Mat :: K
CALL MatCreate(PETSC_COMM_WORLD,K,ierr)
CALL MatSetSizes(K,PETSC_DETERMINE,PETSC_DETERMINE,neq,neq,i
CALL MatSetType(K,MATAIJ,ierr)
!calculate nnz = estimate of number of entries in a row
CALL MatSeqAIJSetPreallocation(K,nnz,PETSC_NULL_INTEGER,ierr
CALL MatMPIAIJSetPreallocation(K,nnz,PETSC_NULL_INTEGER, &
 nnz,PETSC_NULL_INTEGER,ierr)

CALL MatZeroEntries(K,ierr)
DO iel=1,nels
 !calculate values = element stiffness matrix
 !calculate rows = cols = local to global index mapping
 CALL MatSetValues(K,nrows,rows,ncols,cols,values,ADD_VALUE
END DO
CALL MatAssemblyBegin(K,MAT_FINAL_ASSEMBLY,ierr)
CALL MatAssemblyEnd(K,MAT_FINAL_ASSEMBLY,ierr)

• Wrap up the PETSc tasks to be equivalent to the
ParaFEM tasks

• but still have a way to choose between ParaFEM and
PETSc solvers, and the various solvers and
preconditioners.

ParaFEM-PETSc interface
26 April 2017 7

• Two ParaFEM solvers as subroutines
• The most complicated control sequence is for time/load stepping of a

non-linear solution
Create stiffness matrix K and vectors x, f
DO time/load step

DO Newton-Raphson iteration
Set the entries in K
Solve Ku = f

END DO
END DO

• One matrix, one solution vector and one load vector, all stored as
Fortran arrays. The matrix structure is fixed but the matrix entries
may change in non-linear problems

• The matrix is stored in unassembled form
• Global mappings between elements and degrees-of-freedom

(~nodes) are set up by ParaFEM from mesh connectivity data
• The driver programs use a control file to set solver tolerances, etc.
• Equations corresponding to restrained degrees of freedom (i.e.,

homogeneous Dirichlet BCs) are removed from the system

ParaFEM characteristics
26 April 2017 8

• Matrices and vectors are stored as C structures, Mat and
Vec

• Matrices are stored in assembled form – this means that
there is an extra step when assembling a matrix

• The memory needed to store the matrix needs to be
allocated before the actual assembly, otherwise the
assembly becomes 50 times slower.
• PETSc can calculate the amount of memory needed

• PETSc can use a control file to set the solver and
preconditioner used, solver tolerances, etc.

PETSc characteristics
26 April 2017 9

• The driver program can be written to use the ParaFEM solvers,
or the PETSc solvers, or can choose between them at run time

• The ParaFEM matrix and vectors are converted to PETSc Mat
and Vec structures when using the PETSc solvers. The
standardized data structures in ParaFEM allow the PETSc data
structures to be held in one global data structure.

• Control of PETSc is by the standard PETSc control file, not by
specifying options in the ParaFEM control file and translating to
PETSc
• Reduces maintenance
• Several solvers and preconditioners can be listed in the control file and

chosen during program execution
• Direct calls to PETSc are still possible.
• PETSc non-linear and time-/load-stepping routines are not

used.

Interface design
26 April 2017 10

• An example of the solver sequence for time-stepping (or load-
stepping) problems when using PETSc is
Initialise PETSc (p_initialize)
Create PETSc matrix K and vectors x,f (p_create)
DO time/load step
DO Newton-Raphson iteration
Clear the global matrix (p_zero_matrix)
DO element
Calculate element stiffness matrix km
Add km to global matrix K (p_add_element)

END DO
Complete the setup of K (p_assemble)
Solve Ku = f (p_solve)

END DO
END DO

Interface design: example
26 April 2017 11

Name Description

get_solvers Get the name of the solvers to use from the command line

p_initialize Initialize PETSc

p_create Create the PETSc matrix and vectors.

p_zero_matrix Zero the PETSc global matrix.

p_add_element Add an element matrix to the PETSc matrix

p_assemble Assemble the PETSc matrix

p_zero_rows Modify the PETSc global matrix and the load vector by the
fixed freedoms. The resulting matrix in not symmetric.

p_use_solver Choose one of the PETSc solvers specified in the .petsc
configuration files

p_solve Solve using PETSc

p_shutdown Destroy the PETSc data structures and finalize PETSc.

Interface design: wrappers
26 April 2017 12

-nsolvers 2
-prefix_push solver_1_ # call p_use_solver(1,...)

-ksp_type cg
-ksp_rtol 1.0e-5
-ksp_max_it 2000
-pc_type jacobi

-prefix_pop
-prefix_push solver_2_ # call p_use_solver(2,...)

-ksp_type minres
-ksp_rtol 1.0e-5
-ksp_max_it 2000
-pc_type jacobi
-pc_jacobi_abs

-prefix_pop

Interface design: PETSc control file
26 April 2017 13

• The main reason to add PETSc to ParaFEM is to increase
the range of solvers but we also compared the PETSc
and ParaFEM solvers for 3 driver programs
• xx18: a linear elastic solid system in a small strain regime. This is

an example of a symmetric positive definite case (CG/Jacobi)
• xx17: steady state cavity driven flow of an incompressible Navier –

Stokes fluid. This is an example of an unsymmetric case
(BiCGStab(l))

• xx15: large strain solid mechanical modelling of trabecular bone.
This is an example of a symmetric case that starts as positive
definite and becomes indefinite at in the post-buckling regime – this
was modelled only in the pre-buckling regime (CG/Jacobi)

• Tested on TDS – a single-cabinet (1000 core) version of
Archer, with about 2x communications B/W of Archer

PETSc vs ParaFEM
26 April 2017 14

• Three-dimensional analysis of a linear elastic solid
• cuboid with a uniformly loaded patch at the centre of one face
• 20-node hexahedral finite elements
• 1003 element grid (12M equations)
• Conjugate gradient with Jacobi preconditioning

• Processes were distributed equally across 8 nodes
• slowdown is an artefact

• as the number of processes per node increases, the memory bandwidth
per process is reduced (and FE codes are generally memory bound)

• Turbo Boost is enabled on ARCHER processors, so that the clock
speed will increase when fewer cores on a processor are active.

xx18 description
26 April 2017 15

xx18 scaling
26 April 2017 16

0

20

40

60

80

100

120

140

160

180

200

100

1000

10000

1 10

m
em

or
y

/G
B

tim
e

/s

processes

ParaFEM time

PETSc time

ParaFEM memory

PETSc memory

50

Artefact of distribution of
processes over nodes

• PETSc is about 30% faster than ParaFEM in this case.
Both have similar scaling.

• PETSc requires much more memory as the number of
processes increases. During the assembly of the matrix
off-process entries are stored temporarily before they are
distributed with p_assemble.
• On distributed-memory computers, the total memory available will

usually increase faster than the peak memory requirement
• The number of off-process entries depends on how well the

problem has been partitioned across the processes

xx18 discussion
26 April 2017 17

• 3D steady-state flow of an incompressible fluid in a driven cavity,
discretized with Taylor-Hood elements (20-node hexahedra for
velocity, 8-node hexahedra for pressure)

• Non-linear, solved using a Newton-Raphson solver
• Unsymmetric matrix, solved using BiCGStab(l=4) with no

preconditioning
• Non-zero restraints (the velocity of the driven boundary) – uses the

interface routine p_zero_rows
• Small, medium and large cases were tested

• In the small case, the results are the same for ParaFEM and PETSc within the
solver tolerance

• In the medium and large cases there are differences larger than the solver
tolerance, even if reduce and scatter operations are ordered. The PETSc
BiCGStab(l) diverges at a particular N-R iteration causing extra N-R iterations
to achieve convergence if the N-R solver

• The BiCGStab(l) algorithm in PETSc is a modified version, which may explain
the differences

• Further work is needed to resolve the numerical differences and the
cause of the solver divergence

xx17
26 April 2017 18

• Large strain plasticity driver program used in solving
mechanical systems involving buckling and elastoplastic
softening problems

• Non-linear, solved using a Newton-Raphson solver
• The orthopaedic engineering research group at the

University of Edinburgh uses xx15 to simulate the
mechanical behaviour of trabecular bone

xx15 description
26 April 2017 19

• The detailed geometry of the bone structure is generated
through X-ray microtomography

• 7.5M elements (8-node hexahedra), 26M dofs

• The load was kept in the range where the stiffness matrix
remained symmetric positive definite, so CG/Jacobi could be
used

xx15: bone modelling test case
26 April 2017 20

xx15 scaling
26 April 2017 21

50

100

150

200

250

300

350

400

450

100

1000

10000

10 100 1000

m
em

or
y

/G
B

tim
e

/s

processes

Ideal time scaling

ParaFEM time

PETSc time

ParaFEM peak memory

PETSc peak memory

• PETSc and ParaFEM have similar time performance for
the same solvers

• PETSc requires much more memory that ParaFEM
• The main value in adding PETSc to ParaFEM is to make

a wide range of solvers available in ParaFEM so that
users can choose the most suitable solver for their
problem and even change this during the simulation

PETSc vs ParaFEM: summary
26 April 2017 22

• Register on the ParaFEM website http://parafem.org.uk.
• ParaFEM Subversion repository is on SourceForge

https://sourceforge.net/projects/parafem
• ParaFEM-PETSc interface is in the petsc branch – this

will eventually be merged into the trunk. The current
stable revision of the petsc branch is 2237
• Build script for ARCHER
• User guide in same format as Chapter 12 of ‘Programming the

Finite Element Method’ by I.M. Smith, D.V. Griffiths and L. Margetts,
5th edition, 2014

• Example programs, PETSc control files, Archer job scripts, and test
case generation tools for xx18, xx17 and xx15

Getting ParaFEM with PETSc
26 April 2017 23

• ParaFEM now has a wide range of solvers and
preconditioners available through the PETSc interface

Conclusion
26 April 2017 24

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the
material under the following terms: You must give appropriate credit, provide a link to the
license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their permission
before reusing these images.

In some finite element programs and in most linear solver
toolkits, the global stiffness matrix is assembled before
use:

where are the element stiffness matrices and are the
mappings from element numbering to global numbering
(scatter in ParaFEM)

• Most preconditioners in PETSc expect assembled
matrices. An unassembled Mat type could be defined but
it would need to include any operations required by the
preconditioner (e.g. get the diagonal values for Jacobi)

Assembled matrix, or …

26 April 2017 26

ParaFEM uses unassembled matrices
• An iterative solver only needs to evaluate the matrix-

vector product, and that is achieved using scatter and
gather on the vectors:

where are the mappings from global numbering to
element numbering (gather in ParaFEM)

• No assembly is needed but a scatter is needed at every
iteration

• (For sparse matrices, unassembled and assembled
matrices both have a gather every iteration)

… unassembled matrix

26 April 2017 27

