
Welcome
Modern Fortran (F77 to F90 and beyond)

Virtual tutorial starts at 15.00 BST



Modern Fortran: 

F77 to F90 and beyond
Adrian Jackson

adrianj@epcc.ed.ac.uk

@adrianjhpc



Fortran
• Ancient History (1967)

• Name comes from FORmula TRANslation

• Fortran 66 was the first language to have a standard

• Fortran 77 (1978)
• New standard to overcome divergence in different implementations 

• Fortran 90 (1991)
• Major revision – much improved programmability  

• Added modules, derived data types, dynamic memory allocation, intrinsics

• But retained backward compatibility!

• Fortran 95 (1997)
• Minor revision but added several HPC related features; forall, where, pure,  elemental, pointers 

• Fortran 2003 (2004)
• Major revision: OO capabilities, procedure pointers, IEEE arithmetic, C interoperability, 

• Fortran 2008 (2010)
• Minor change: co-arrays and sub modules 

• Fortran 2015 (2018?)
• Minor revision: planned improvements in interoperability between Fortran and C, parallel features, etc..



F90 text/character changes
• Names (variables, program units, labels) maximum size increased:

• Up to 31 characters, only 6 character in F77

• Comments start with !
• Also allows inline comments: i.e. a = b + c ! My sum
• F77: c or C in column 1

• Free-format 
• Up to 132 character lines
• No specification about where on a line characters are
• Spaces not allowed inside constants or variable names
fred = 1 00 42         �

fred =   10042    �

• Continuation of lines done using & at end of line
a = b + &

c ! My sum

• Breaking character strings requires & at end of line and the beginning of the next line
mystring = ‘hello&

& and welcome’

• Can use “” and ‘’ for character strings (allows “you’re an idiot” type strings)



Typing

• IMPLICIT NONE

• Instruct the compiler to disable implicit typing for a program unit

• Implemented in most F77 compilers prior to F90

• Required for main program, subroutines/functions (unless in 
contains), and modules

• New variable definition format
• :: used to separate attributes from variable names

integer, parameter :: bob = 6

• rather than

integer bob

parameter (bob=6)



Typing

• intents to provide compiler checking and optimisation 

options
• intent(in): Variable data will be used inside the routine but not 

modified

• intent(out): Variable will be modified in the routine but the initial 

value will not be used

• intent(inout): Variable initial data required and will be modified 

in the routine



Modules
• Constants, variables, and procedures can be encapsulated in
modules for use in one or more programs.

• A module is a collection of variables and procedures
module sort

implicit none

! variable specifications

...

contains

! procedure specifications

subroutine sort_sub1()

... 

end subroutine sort_sub1

...

end module sort

• Variables declared above contains are in scope
• Everywhere in the module itself
• Can also be made available by using the module



Points about modules

• Within a module, functions and subroutines are known 

as module procedures

• Module procedures can contain internal procedures

• Module objects can be given the SAVE attribute

• Modules can be USEd by procedures and modules

• Modules must be compiled before the program unit 

which uses them

• This can complicate your build process

• Some use scripts or small applications to work out the correct 
compile order



Using modules

• Contents of a module are made available with use :
PROGRAM TriangUser

USE Triangle_Operations

IMPLICIT NONE

REAL :: a, b, c

• The use statement(s) should go directly after the program 
statement

• implicit none should go directly after any use statements

• There are important benefits
• Procedures contained within modules have explicit interfaces
• Number and type of the arguments is checked at compile time
• Not the case for external procedures
• Can implement data hiding or encapsulation

• via public and private statements and attributes



• F90 allows the use of derived data types

• Groups of data structures

• Enables building of more sophisticated types than the intrinsic 

ones, i.e. linked data structures, lists, trees etc…

• Imagine we wish to specify objects representing 

persons
• Each person is uniquely distinguished by a name and room 

number 

• We can define a corresponding “person” data type as follows:
type person

character (len=10):: name

integer :: officeNumber

end type person

Derived data types



• To create a derived type variable you use the syntax:
type(person) :: fred, me

• Initialisation (construction) possible as well:
fred = person(””””Fred Jones””””, 21)

• fred is a variable containing 2 elements: name, 
officeNumber

• Elements (individual components) of derived type can 
be accessed by component selector: % 

fred%name ! contains the name of you

fred%officeNumber ! contains the age of you

Derived data types



Operators

• Comparison operators:
• New characters for operators, either can be used, can be mixed

.lt. =>   <      ! less than            

.le. =>   <=     ! less than or equal

.gt. =>   >  ! greater than

.ge. =>   >= ! greater than or equal

.eq. =>   ==     ! equal

.ne. =>   /=     ! not equal

• Logical variables should be compared with

.eqv.

.neqv.



Operator overloading 

• Using interfaces it is possible to overload operators (or define 
your own operators) as well:

implicit none

interface operator(+)
module procedure real_sum, int_sum

end interface

…

• Only really makes sense if you define your own operators or 
datatypes
• Can’t override existing definitions (the above example isn’t actually 

allowed)



Loops
• do loop terminated by end do
do i=1,10

x = x + y

end do

• rather than
do 10 i=1,10

10  x = x + y

• cycle keyword will skip a loop iteration
do i=1,10

if(i .eq. 5) cycle

x = x + y

end do

• exit keyword will finish the loop
do i=1,10

x = x + y

if(x>100) exit

end do



Dynamic memory

• Dynamic memory supported by allocatable attribute, allocate,  
deallocate and allocated routines
• Automatically deallocated when out of scope unless SAVEd

real, allocatable :: charles(:,:)

integer :: myerror

…

allocate(charles(1000,10))

…

if(.not. allocated(charles)) then

allocate(charles(1000,10),stat=myerror)

if(myerror /= 0) stop

end if

…

deallocate(charles)



Portable precision

• F77 defined variable precision by specify the number of bytes 
data stored in:

integer*4, real*8

• F90 introduces more control, can specify required variable 
range

• SELECTED_INT_KIND: define the minimum number of decimal 
digits required

• SELECTED_REAL_KIND: define minimum number of decimal 
digits and exponent range

INTEGER, PARAMETER :: large_int = SELECTED_INT_KIND(9)

INTEGER(KIND=large_int) :: i

• large_int is non-negative if the desired range of integer 
values,  -109 < n < 109 can be achieved



Portable precision

INTEGER, PARAMETER :: small_real = SELECTED_REAL_KIND(6,37)

• small_real is non-negative if the desired exponent range of real values,  -1037 < 

n < 1037 can be achieved, and the desired number of decimal digits, .000001 ,can 

be achieved

• selected_real_kind returns:

• -1 if the precision cannot be achieved

• -2 if the range cannot be achieved

REAL(KIND=small_real) :: x

real(small_real), allocatable :: my_data(:,:)

• Constants can be specified with a kind type (like 7.d0)

INTEGER(KIND=large_int) :: I = 7_large_int

REAL(KIND=small_real) :: x = 5.0_small_real



Array operations

• Fortran can operate on whole arrays
• whole or subsections

a = 0.0 ! scalar conforms to any shape

b = c + d ! b,c,d must be conformable

e = sin(f) + cos(g)! and so must e,f,g

• Subsection selection:
• REAL, DIMENSION(1:15) :: A

• A(:) whole array
• A(m:) elements m to 15 inclusive
• A(:n) elements 1 to n inclusive
• A(m:n) elements m to n inclusive
• A(::2) elements 1 to 15 in steps of 2
• A(m:m) 1 element section of rank 1

• WHERE (P > 0.0) P = log(P)



Array operations

• Range of array intrinsics
WHERE (P > 0.0) P = log(P)

WHERE (P > 0.0)

X = X + log(P)

Y = Y – 1.0/P

END WHERE

nonnegP = COUNT(P > 0.0)

sumP = SUM(P)

P = MOD(P,2)



Advice for moving to F90 from F77

• Text changes required
• Comments c -> !

• Continuation lines & at column 6 becomes & at end of the line

• Implicit none
• Make sure typing is explicit

• If code uses implicit typing this require lots of variable declarations

• Rename variables if you are declaring them for the first time

• Use kind parameters if you are declaring new variables

• Use modules
• Split code into sensible groupings

• Convert groupings into modules

• Use those modules where required

• Common blocks to modules

• Files to modules



Advice for moving to F90 from F77

• Using modules

• Make module private by default

• Only use the components you require

• Convert do loops

• Rename variables

• Declare variables using module defined kind parameters

• Enables easy change of precision if required

• Move to dynamic allocation from static

• Consider array syntax for new code development



Interoperable code F77 and F90

• Occasionally it’s necessary to have code that works in 

both F77 and F90

• i.e. include file for library

• Can be done by including continuation characters in 

correct place
• & at the end of the line but after the 72 character (F90)

• & at the beginning of the line in column 6 (F77)

• No inline comments

• Comment character ! in 1st column

• Not strictly F77 compliant but compilers will generally accept this



Newer features

• C interoperability
• New module ISO_C_BINDING

• Has the kind types for C intrinsic variables

• Defined types and structures can be inter-operable:

TYPE, BIND(C) :: matrix

….

END TYPE matrix
• Some restrictions on what can be in the types or structures

• Same can be done for procedures with defined interfaces



Newer features

• Object oriented programming
• Modules and derived types can be used to make “semi-classes”

• Encapsulation of data and functions with modules

• Controlled access to data or functions with private and public keywords

• Polymorphism with interfaces

• Operator overloading with interfaces

• F2003 introduces further OO functionality
• Type bound procedures

module building

implicit none

integer, parameter :: MAXLEN = 100

type person

character(MAXLEN) :: name

integer :: officeNumber

contains

procedure, nopass :: getName

procedure :: setName

procedure :: getOfficeNumber

procedure :: setOfficeNumber

end type person

end module building



Newer features

• Class variable passed to type bound procedures
• Allows polymorphic procedures

• Type bound procedures must take a class variable
• Variable name is not prescribed (self is not a keyword)
• Automatically passed
• Allows for data polymorphism

function getName(self)

class(person), intent(inout):: self

character(MAXLEN) :: getName

getName = self%name

end subroutine

• Allowed unlimited polymorphic type
class(*)

• Can define abstract classes, extend classes, overload procedures, etc…



Newer features

• Pointers

• Alias to variables

• Co-arrays

• Parallel programming using partitioned global address space 
(PGAS) approach

• Recursive procedure support

• select…case… functionality



Goodbye
Virtual tutorial has finished

Please check here for future tutorials 

and training

http://www.archer.ac.uk/training

http://www.archer.ac.uk/training/virtual/


