Welcome

Virtual tutorial starts at 15.00 BST

an 1V o
- G .J//II
arcnmne i)Eaq B
(o) A~ x
O — (<)
N <
OINBS

NATURAL
ENVIRONMENT E P S R‘
RESEARCH COUNCIL

Usings KNL on ARCHER

Adrian Ja With thanks to:
adrianj@epcc.ed.ac.uk Harvey Richardson
@adrianjhpc from Cray

Slides from Intel

. ' OM‘I{‘/’-J-
N 7 €
archer ‘epCC‘ i ped B
- = (‘x 'f
xH\x\‘Qh

-
Xeon Phi — Knights Landing (KNL)

- Intel’s latest many-core processor
- Knights Landing
- 2"d generation Xeon Phi

- Successor to the Knights Corner
- 15t generation Xeon Phi

- New operation modes

- New processor architecture
- New memory systems

- New cores

T
ARCHER KNL

12 KNLs in test system

Should be available mid-October
ARCHER users get access
Non-ARCHER users can get access through driving test

Initial access will be unrestricted
After first month usage will be charged

Each node has

1 x Intel(R) Xeon Phi(TM) CPU 7210 @ 1.30GHz
64 core/4 hyperthreads
16GB MCDRAM

96GB DDR4@2133 MT/s

epce| @

I
Running applications on the XC40

256 threads per KNL processor

Numbering wraps, i.e. 0-63 the hardware cores, 64-127 wraps onto
the cores again, etc...

Meaning core O has threads 0,64,128,192, core 1 has threads
1,64,129,193, etc...

Use PBS and aprun as in ARCHER

Standard PBS script, with one extra for selecting
memory/communication setup (more later)

Standard aprun, run 64 MPI processes on the 64 KNL cores:
aprun —n 64 _/my_app

epce| @

I
Running applications on the XC40

For hyperthreading (using more than 64 cores):
OMP_NUM_THREADS=4

aprun —n 64 —d 4 —cc depth —j 4 ./my _app

Should also be possible to control thread
placement with OMP_PROC_BIND:

OMP_PROC_BIND=true
OMP_NUM_THREADS=4
aprun —n 64 —cc none —j 4 ./my_app

. S ‘Il:/"._:-
N~ Ay
= it -
arcnenr | pEzq |
:;_ o ;:::
S,
DN

e
Memory

Two levels of memory for KNL

Main memory
KNL has direct access to all of main memory
Similar latency/bandwidth as you’d see from a standard processors
6 DDR channels
MCDRAM
High bandwidth memory on chip: 16 GB
Slightly higher latency than main memory (~10-15% slower)
8 MCDRAM channels

_\\
o
=~
o)

o

epcc

.
Memory Modes

Cache mode
MCDRAM cache for DRAM
Only DRAM address space
Done in hardware (applications don’'t need modified)
Misses more expensive (DRAM and MCDRAM access)

Flat mode
MCDRAM and DRAM are both available
MCDRAM is just memory, in same address space
Software managed (applications need to do it themselves)

Hybrid — Part cache/part memory
25% or 50% cache
Possible cost of additional address lookup

epce| @

Cache mode
MCDRAM Cache Hit Rate

|
I
100%
80%
U
L i
] o
& 60% £ o
= < 0}
= w
T O
40% 2z
5@
o'd
20% sS
| KNL memory mode = cache, cluster mode = quadrant
| Data: Intel® Corp.
0% !
0 20 40 60 80 100 120 140
Workload Data Set Size in GB
— 410.bwaves —— 416.gamess — 433.milc —— 434.zeusmp —— 435.gromacs —— 436.cactusADM
—— 436.cactusADM — 437 leslie3d —— 444 .namd 447 dealll —— 450.soplex —— 453 .povray
—— 454 calculix —— 459.GemsFDTD 465.tonto 470.lbm — 481.wrf —— 482.sphinx3
AMG Snap MiniGhost UMT miniDFT

Software and workloads
used in performance tests
may have been optimized
for performance only on
Intel microprocessors.
Performance tests, such as
SYSmark and MobileMark,
are measured using
systems, components,
software, operations and
functions. Any change to
any of those factors may
cause the results to vary.
You should consult other
information and
performance tests to assist
you purchases, including
the performance of that
product when combined
with other products. KNL
results measured on pre-
production parts. Any
difference in system
hardware or software
design or configuration may
affect actual performance.
For more information go to
htp:/fwww.intel.com/perfor
mance *Other names and
brands may be claimed as
the property of others

MCDRAM performs well as cache for many workloads

Enables good out-of-box performance

Slide from Intel

archenr

without memory

— I S L, K N 2

CPCC

tuning

.
Discovering memory modes

apstat —M (KNL configuration)

MCDRAM exposed as separate NUMA node
Use numactl program

Check available memory

[adrianj@esknll ~]$ aprun —n 1 numactl --hardware
available: 2 nodes (0-1)
node O cpus: 0123456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
255
node O size: 98178 MB
node 0 free: 81935 MB
node 1 cpus:
node 1 size: 16384 MB
node 1 free: 15924 MB
node distances:
node 0 1

0: 10 31

31 10

©)=rcher epcc

.
Using flat mode

numactl can also set bulk memory policy
Preferred or enforced memory for application

Example code:

Force to use MCDRAM, fails if exhausts memory
aprun -n 64 numactl --membind 1 ./castep.mpi forsterite

aprun -n 64 numactl -m 1 _./castep.mpi forsterite

Tries to used preferred memory, falls back if exhausts memory
aprun -n 64 numactl --preferred 1 ./castep.mpi forsterite

aprun -n 64 numactl -p 1 ./castep.mpi forsterite

epcc

_\\
o
=~
o]

o

O
Allocating MCDRAM

A Heterogeneous Memory Management Framework

MEMKIND HBWMALLOC
* Defines a plug-in architecture. « Implements easy model for KNL.
» Each plug-inis called a “kind” of . Implemented using memkind;
memory.

simplifies plug-in (kind) selection.
 Built on top of jemalloc: the FreeBSD

OS default heap manager. * Provides support for 2MB and 1GB

pages.
« Partition is defined by functions that _
provide inputs for operating system » Select fallback behavior when on
calls. package memory does not exist or is
: exhausted.
« High level memory management
functions can be over-ridden as well. . Check for existence of on package
https://github.com/memkind memory.

Jeff Hommond
= | @ hEP Intel Parallel Computing Lab ‘ ep(‘

Allocating MCDRAM
End Goal Usage: Code Snippets

Heap allocation in C

float * fv1l = malloc(sizeof(float) * 1000);
float * fv@ = hbw_malloc(sizeof(float) * 1000);

Allocatable arrays in Fortran

REAL, ALLOCATABLE :: A(:), B(:), C(®)

IDIR$ ATTRIBUTES FASTMEM :: A
NSIZE=1000

I allocate array ‘A’ from MCDRAM
ALLOCATE (A(1:NSIZE))

I Allocate arrays that will come from DDR
ALLOCATE (B(1:NSIZE), C(1:NSIZE))

Automatic variables will be
allocated in DDR in flat mode.

This means you may need to
convert from automatic to
heap arrays or use hybrid
mode if such data is used in a
bandwidth-intensive way.

Standard containers in C++ (not documented upstream yet)

std::vector<float, hbwmalloc::hbwmalloc_allocator<float> > vec;

aPChEP Jeff Hammond ‘ epCC .: 3
Intel Parallel Computing Lab

memkind on XC40 and from Fortran

Will be available as a module on the syste
module load cray-memkind
man memkind/hbwmalloc for details of APIs
Wrapped hbw_malloc
Call malloc directly in Fortran
https://github.com/jeffhammond/myhbwmalloc

use fTortran_hbwmalloc
include "mpif.h"
integer offset Kkind
parameter (offset_kind=MPI_OFFSET_KIND)
integer(kind=offset_kind) ptr
INTEGER(C_SIZE_T) param
type(C_PTR) localptr
real (kind=8) r8
pointer (pr8, r8)
iT (type.eq-"r8") then
param = 8*dim
localptr = hbw_malloc(param)
else 1T (type.eq."14") then
param = 4*dim
localptr = hbw_malloc(param)
end 1f
ptr = transfer(localptr ptr)
if (type.eq."r8") then
call c_fT pointer(localptr, pr8)
call zeroall(dim,r8)
end if

archenr

epCC| i

I
MCDRAM from Fortran

Intel
FASTMEM is Intel directive

Only works for allocatable arrays

Cray CCE.:
1dir$ memory(attributes)
#pragma memory(attributes)

Placed before allocation and deallocation statements
Fortran: allocate, deallocate (optional)
C/C++: malloc, calloc, realloc, posix_memalign, free
C++: new, delete, new([], delete[]

Directive on deallocation must match (C/C++ only)
Converts normal allocation to high-bandwidth memory
The bandwidth attribute maps to MCDRAM

epce| @

CCE MCDRAM Support

integer, dimension(:,:), allocatable :: A
1dir$ memory(bandwidth) B
integer :-: B(N)

1dir$ memory(bandwidth)
allocate(A(N,N))

Allocation will fail (in above examples) if MCDRAM is
unavailable/exhausted

More general form can deal with this:
1dir$ memory([fallback,] attributes)

l.e. 1dir$ memory(fallback,bandwidth)will fall back to DDR if
MCDRAM isn’t available

LIV
R &
i T -
P P K N7 i
a C e ¢ E '-
A S
\ -g-’_ '\._\'
S >
DN

T
KNL

KNL Mesh Interconnect

Mesh of Rings
MCDRAM MCDRAM MCDRAM MCDRAM = Every row and column is a (half) ring
¢ * YXrouting:GoinY = Turn = Goin X

= Messages arbitrate at injection and on
turn

Cache Coherent Interconnect
|
- = MESIF protocol (F = Forward)
= Distributed directory to filter snoops

DDR - -—b[DDR

Three Cluster Modes
hemisphere

(1) All-to-All (2) Quadrant (3) Sub-NUMA |

MCDRAM MCDRAM MCDRAM MCDRAM Cluste ring

Avinash Sodani CGO PPoPP HPCA Keynote 2016

. archenr

Hemisphere is like quadrant but only uses 2 virtual halves

Cluster Mode Quadrant

MCDRAM MCDRAM PCle MCDRAM MCDRAM

Chip divided into four virtual
Quadrants

Address hashed to a Directory in
the same quadrant as the Memory

DDR

Affinity between the Directory and
Memory

Lower latency and higher BW than
all-to-all. SW Transparent.

MCDRAM MCDRAM MCDRAM MCDRAM

1) L2 miss, 2) Directory access, 3) Memory access, 4) Data return
Avinash Sodani CGO PPoPP HPCA Keynote 2016

archenr

If using only 1 MPI rank and OpenMP to fill up cores

KN I_ If also using SNC have to enable all memory access
numactl —m 4,5,6,7

Cluster Mode: Sub-NUMA Clustering (SNC)

'MCDRAM MCDRAM PCle ‘ MCDRAM MCDRAM

P P Each Quadrant (Cluster) exposed as a
] | separate NUMA domain to OS.

Looks analogous to 4-Socket Xeon

-a—» DDR

Affinity between Tile, Directory and
Memory

DDR i

Local communication. Lowest latency
of all modes.

SW needs to NUMA optimize to g t ‘

'MCDRAM MCDRAM MCDRAM MCDRAM benefit.

1) L2 miss, 2) Directory access, 3) Memory access, 4) Data return
Avinash Sodani CGO PPoPP HPCA Keynote 2016 .

archenr

KNL
Cluster Mode: All-to-All

Address uniformly hashed across all

MCDRAM MCDRAM MCDRAM MCDRAM

MCDRAM MCDRAM. pcle | MCDRAM MCDRAM distributed directories
EDC : [eoc t EDC ¢ EDC t
e o - = - No affinity between Tile, Directory and
| Memory
Tile Tile / ile Tile Tile Tile
Tile Tile Tile Tile Tile Tile MOSt genera[mode. LOWer
mc e =1 B = performance than other modes.
i
Tile Tile Tile Tile Tile Tile
, s Typical Read L2 miss
Tile Tile Tile Tile Tile Tile
: e 1. L2 miss encountered
Tile Tile Tile Tile Tile Tile
= e 2. Send request to the distributed directory
EDC EDC Misc EDC EDC . . .
3. Miss in the directory. Forward to memory
4. Memory sends the data to the requestgg

. archenr

-
Programming the KNL

Standard HPC - parallelism
MP]

OpenMP
Default OMP_NUM_THREADS may be 256

mKI

Standard HPC — compilers
module load craype-mic-knl

Intel compilers
—XMI1C-AVX512 (without the module)
Cray compilers
—hcpu=mic-knl (without the module)
GNU compilers
—-march=knl or -mavx512f -mavx512cd -mavx512er -mavx512pf
(without the module)

epcc

I
Compiling for the KNL

Standard KNL compilation targets the KNL vector
Instruction set

This won’t run on standard processor
Binaries that run on standard processors will run on the KNL

If your build process executes programs this may be an
ISsue

Can build a fat binary using Intel compilers
—ax MIC-AVX-512,AVX

For other compilers can do initial compile with KNL instruction set
Then re-compile specific executables with KNL instruction set
l.e. —aAVX for Intel, -hcpu=... for Cray, -march=... for GNU

epce

0.\'”'1_-

_\\
o
=~
o)
o

Configuring KNL

Different memory modes and cluster options
Configured at boot time

Switching between cache and flat mode
Switching cluster modes

For ARCHER XC40 Cluster configuration is done through batch system (PBS)
Modes can be requested as a resource:
#PBS —1 select=4:aoe=quad_ 100
#PBS —1 select=4:aoe=snc2 50
This is in the form :aoe=numa_cfg_hbm_cache pct

Available modes are:

For the NUMA configuration (numa_cfq): a2a, snc2, snc4, hemi, quad

For the MCDRAM cache configuration (hbm_cache_pct): 0, 25, 50, 100
So for quadrant mode and flat memory (MCDRAM and DRAM separate) this
would be:
#PBS —1 select=4:aoe=quad_O

If assighed nodes are not in the correct state re-boot will automatically occur
This may delay the job starting

- Still under configuration
© €pCC

e
Suggestions

Pure MPI is fine for some codes, hybrid better for others

If hybrid need a minimum number of MPI processes for memory and
network bandwidth
l.e. quadrant mode would want 1 MPI process per quadrant

If hybrid then need good second level parallelism
Serial code is still slower than standard multi-core
Need to make sure as much code is OpenMP’d or equivalent

Cache mode is a good place to start
Compare flat mode with cache mode to see performance impact of MCDRAM

Quadrant mode is a good place to start
Vectorisation is key for performance (but not as hard as KNC)

Hyperthreads can be beneficial
Not required by can give performance boost

epcc

e
Getting access

There will be a button KNL access in the Login account
details page on SAFE
Page for the account you get to from the Login accounts menu
Click this button to apply for accounts

This will join your existing account to the kO1 project

give them access to a personal budget kO1-<username> with 30
kAU

/home will be cross-mounted from ARCHER

/work is a new disk system

You will get a user quota on /fs5
Set up as a scratch disk.

epce| @

e
System setup

KNL system will have it's own login nodes
Not accessible from the outside world
Have to login in to the ARCHER login nodes first

SSH into the KNL login nodes
Name still under consideration

Compile jobs there

Different versions of the system software from the standard
ARCHER nodes

Submit jobs using PBS from those nodes

epce| @

Training and documentation

Upcoming 1 day course about Using KNL on ARCHER
https://www.archer.ac.uk/training/

Documentation
http://archer.ac.uk/documentation/knl-quide/

ARCHER Helpdesk

LIV
NIVy 4,
i -
a a SARPN
A S
. J- a
& <
DN

Performance
Initial performance experiences with a single KNL
Application KNC (KNL |[KNL HB |lvyBridge Broadwell
COSA 561 [450 497 349
GS2 400 [184.2 |103.8 126.6 83.4
CASTEP 149 [146 102 38

epcc

Performance multli-node

COSA - Fluid dynamics code
Harmonic balance (frequency domain approach)
Unsteady navier-stokes solver
Optimise performance of turbo-machinery like problems
Multi-grid, multi-level, multi-block code

ARCHER Broadwell KNL KNL HB KNL 2 Node HB
497 349 561 450 197

epce| @

Performance - Allreduce

Average time (microseconds)

1000000

100000

10000

1000

100

10

0.1

MPI_Allreduce KNC, KNL and host

Message size (bytes)

==Host 16 procs
=4=KNC 60 procs
==KNC 120 procs
==KNC 240 procs
=0=KNL 2 procs
«+=KNL 4 procs
KNL 8 procs
KNL 16 procs

=0=KNL 32 procs

=#=KNL 64 procs

MPI Performance — PingPong — Memory modes

3500

3000

=e=KNL Bandwidth 64 procs

§ 2500 =0=KNL Fastmem bandwidth 64 procs -
=
£ KNL cache mode bandwidth 64 procs
T 2000 "
; }
S
c
O
@ 1500 ,
bn y
c i
S !
a /
& 1000 !
) /7
500 il
O_Mﬂ"\ﬂfﬁiG'lﬁ'l T T T T T T T T \ T T T T]
° N Y W 288388238 LY
o o o i o ™~ LN o i N LN i
SNSesg858325
o N8B g g

Message size (Bytes) ‘ e p CC

MPI Performance — PingPong — Memory modes

10000
=e=KNL latency 64 procs
«=0=KNL Fastmem latency 64 procs
1000
’_g KNL cache mode latency 64 procs
[
o
(8]
()]
[72]
o
S
L2 100
E
>
(8}
c
(V]
hd
©
—
10
g et /‘0
1 \’.I T I [| | | I T I | I T 1
OHNQ‘OOLON <I'OOLON<I'OOLON<I'OOLDN<I'
HMLDNLDHNQ‘O\O\OO&OMI\#OOI\LHO
N 1N O O O 14 nh I~ N O 4 N 1N 1 o
- N <t 00 O N N I N < 00 N <
| N O Nm O N < O O
— N O o
N

Message size (Bytes)

epCcC|

MPI_Allreduce KNL different memory modes for 2 and 64 processor benchmarks

100000
=0=KNL 2 procs
10000 KNL 2 procs fastmem
KNL 2 procs cache mode
1000 KNL 64 procs

=0=KNL 64 procs fastmem

=#=KNL 64 procs cache mode

Average time (microseconds)

100
10
1‘ T T T° 1T 1T T 71T T T 1T T T
S RS R S TR S S s R R S IR
SRR R U SR I g JRIC R P IS
MO A WP 6"'965”«,@',],&" & o
MECRS R NI
0.1

Message size (bytes)

T
EPCC IPCC

EPCC has IPCC collaboration with Intel

Working on porting and optimising codes on Xeon Phi

Training and support of Xeon Phi

Get in touch If you've got any guestions, or something
you’'d like to collaborate on

LIV
NIV 4
iy -,
P P K N7 i
A S
\ -g-’_ '\._\'
S >
DN

- —

A .’
ot
» i\f‘y. ‘5;:"

ar‘c’ﬁ‘em ok
Goodbye

Virtual tutorial has finished
Please check here for future tutorials
and training
http://www.archer.ac.uk/training
.//lwww.archer.ac. uk/trammg/thual/

epcc @

