Welcome

Virtual tutorial starts at 15.00 BST

oNLVe
< l?‘j\/
e CC | 2 -
~ 2 -
ij\
& <
OrNB Y

Introduction to KNL

Adrian Jackson Many slides from Intel
adrianj@epcc.ed.ac.uk presentations
@adrianjhpc

EPSRC N=e

archenr =AY

THE SUPERCOMPUTER COMPANY

oNLVe
< l?‘j\/
e CC | \w -
~ 2 -
ij\
& <
DTN B

-
Xeon Phi— Knights Landing (KNL)

- Intel's latest many-core processor
- Knights Landing
- 2" generation Xeon Phi

- Successor to the Knights Corner
- 18t generation Xeon Phi

- New operation modes

- New processor architecture
- New memory systems

- New cores

. Cores: 61 coress, at 1.1 GHz
— St 16 Channel GDDRS MC - in-order, support 4 threads
PCle GEN2 512 bit Vector Processing Unit
3 ; o 32 native registers

: nghts Corner E TR .
Many Integrated Cores @—-@—E‘ . . - —

(MIC) architecture - N 'éi s |
- HPC/computational e [[[[p—
simulation primary market ——
« (Co-processor y AL A |
« PCle Card AN gt AR LAy
* 60 cores/240 threads/1.054 o ol e LB
GHz = A | | i
« 8 GB memory/320 GB/s

bandwidth Sl
512-bit SIMD instructions

. Hybrld between GPU and many-
core CPU

epce

Q,
<,
~
O
<

-
KNC — 1st Gen

- 3100 series 5100 series 7100 series

Cores

Clock frequency 1.100 GHz 1.053 GHz 1.238 GHz
DP Performance 1 Tflops 1.01 TFlops 1.2 TFlops
Memory Bandwidth 240 GB/s 320 GB/s 352 GB/s
Memory 6 GB 8 GB 16 GB

- Usable in different ways
- Offload kernels
- “Native” direct run applications

epCcc

Q)
<,
[\
O
<

-
KNC: Achievable Performance

1 to 1.2 TFlop/s double precision performance
Dependent on using 512-bit vector units
And FMA instructions
240 to 352 GB/s peak memory bandwidth
~60 physical cores
Each can run 4 threads
Must run at least 2 threads to get full instruction issue rate
Don’t think of it as 240 threads, think of it as 120 plus more if beneficial
2.5x speedup over host is good performance
Highly vectorised code, no communications costs
MPI performance
Can be significantly slower than host

epCcc

KNL

Knights Landing Overview

2 x16 X4
Mcmﬂ mmﬂ 1x4 DMl ycpram Mcpm\ Chip: ... 36 Tiles interconnected by 2D Mesh

5 iy & Tile: 2 Cores + 2 VPU/core + 1 MB L2

PCle
Gen 3 Memory: MCDRAM: ... 16 GB on-package; High BW
DDR4: 6 channels @ 2400 up to 384GB
36 Tiles 10: 36 lanes PCle Gen3. 4 lanes of DMI for chipset
connected by Node: 1-Socket
2D Mesh Fabric: Intel®* Omni-Path Fabric on-package
Interconnect (notillustrated)

w
w

& OO
& 0O O

Vector Peak Perf: 3+TF DP and 6+TF SP Flops
Scalar Perf: ~3x over Knights Corner
Streams Triad (GB/s): MCDRAM : 450+; DDR: ~90 |

4 v Note: not all specifications shown apply to all Knights Landing SKUs
Source Intel: All products, computer systems, dates and figures specified are prehmlnay based op.&

wrrmZZ2>InN

are subject to change without notice. KNL data are preliminary based on current ex
without notice. 1Binary Compatible with Intel Xeon processors using Haswelllas
numhersarebasa‘ionSTREAM-hkemuyawees_ f
estimaiod bacol terna

what/ why

Self Boot Processor No PCle bottleneck

Binary Compatibility with Xeon Runs all legacy software. No recompilation.

New Core: Atom™ based ~3x higher ST performance over KNC

Improved Vector density 3+ TFLOPS (DP) peak per chip

New AVX 512 ISA New 512-bit Vector ISA with Masks

Scatter/Gather Engine Hardware support for gather and scatter

New memory technology: Large High Bandwidth Memory - MCDRAM

MCDRAM + DDR Huge bulk memory - DDR

New on-die interconnect: Mesh High BW connection between cores and memory

Integrated Fabric: Omni-Path Better scalability to large systems. Lower Cost =

Picture from Avinash Sodani’s talk from hot chips 2016

©)orcher

epCcc

-
Memory

Two levels of memory for KNL

Main memory
KNL has direct access to all of main memory

Similar latency/bandwidth as you'd see from a standard processors
6 DDR channels

MCDRAM
High bandwidth memory on chip: 16 GB

Slightly higher latency than main memory (~10% slower)
8 MCDRAM channels

epCcc

e
Memory Modes

Cache mode
MCDRAM cache for DRAM
Only DRAM address space
Done in hardware (applications don’t need modified)
Misses more expensive (DRAM and MCDRAM access)

Flat mode
MCDRAM and DRAM are both available
MCDRAM is just memory, in same address
Software managed (applications need to do it themselves)
Hybrid — Part cache/part memory
25% or 50% cache

epCcc

Cache mode
MCDRAM Cache Hit Rate

' used in performance tests
may have been optimized
for performance only on
Intel microprocessors
Performance tests, such as
SYSmark and MobileMark,
are measured using
systems, components,
software, operations and
functions. Any change to
any of those factors may
cause the results to vary.
You should consult other
information and
performance tests to assist
you purchases, including
KNL memory mode = cache, cluster mode = quadrant the performance of that
Data: Intel® Corp. product when combined

o, with other products. KNL
0% results measured on pre-
40 60 80 100 120 140 | production parts. Any

. . difference in system
Workload Data Set Size in GB hardware or software
design or configuration may
affect actual performance.
—— 410.bwaves —— 416.gamess —— 433.milc —— 434.zeusmp —— 435.gromacs —— 436.cactusADM For more information go to
http-/iwww.intel.com/perfor
—— 436.cactusADM —— 437 leslie3d —— 444 .namd 447 dealll — 450.s0plex — 453.povray mance *Other names and
brands may be claimed as

—— 454, calculix —— 459.GemsFDTD 465.tonto 470.lbm — 481.wrf —— 482.sphinx3 the property of others
AMG Snap MiniGhost umT miniDFT

MCDRAM performs well as cache for many workloads
Enables good out-of-box performance without memory tuning

- oS S R R

ar‘Cher‘ Slide from Intel ‘epCC‘ :f 7

100% | pe—

l

80%

60%

Hit Rate

40%

20%

MCDRAM Cache ‘
77 Capacity16GE ~ |/ N

o
N
o

“

-
Using flat mode

Set bulk memory policy
Preferred or enforced memory for application
MCDRAM exposed as NUMA node
Use numact1 program

Example code:

Check available memory
[Xajacks@elnd Mg2SiO4-geom]$ numactl —--hardware
available: 2 nodes (0-1)
node 0 cpus: 0 2 4 6 8 10 12 14 16 18 20 22

node 0 size: 49090 MB
node 0 free: 32586 MB
node 1 cpus: 1 3 5 7 9 11 13 15 17 19 21 23
node 1 size: 49152 MB
node 1 free: 28820 MB
node distances:
node 0 1
0: 10 21
1: 21 10

Fails if exhausts memory
mpirun -n 64 numactl -m 1 ./castep.mpi forsterite
Tries to used preferred memory, falls back if exhausts memory
mpirun -n 64 numactl -p 1 ./castep.mpi forsterite

epCC

I
Allocating MCDRAM

A Heterogeneous Memory Management Framework

MEMKIND HBWMALLOC
* Defines a plug-in architecture. « Implements easy model for KNL.
« Each plug-inis called a “kind"” of . Implemented using memkind:
memory. simplifies plug-in (kind) selection.

« Built on top of jemalloc: the FreeBSD

OS default heap manager. » Provides support for 2MB and 1GB

pages.
« Partition is defined by functions that _
provide inputs for operating system » Select fallback behavior when on
calls. package memory does not exist or is
: exhausted.
« High level memory management
functions can be over-ridden as well. « Check for existence of on package
https://github.com/memkind memory.

Jeff Hommond
alnNCc hep Intel Parallel Computing Lab ‘ ep< {

I
Allocating MCDRAM

End Goal Usage: Code Snippets

Heap allocation in C

float * fvl = malloc(sizeof(float) * 1000);
float * fv2 = hbw_malloc(sizeof(float) * 1000);

Allocatable arrays in Fortran

REAL, ALLOCATABLE :: A(:), B(:), C(")

IDIR$ ATTRIBUTES FASTMEM :: A
NSIZE=1000

I allocate array ‘A’ from MCDRAM
ALLOCATE (A(1:NSIZE))

I Allocate arrays that will come from DDR
ALLOCATE (B(1:NSIZE), C(1:NSIZE))

Automatic variables will be
allocated in DDR in flat mode.

This means you may need to
convert from automatic to
heap arrays or use hybrid
mode if such data is used in a
bandwidth-intensive way.

Standard containers in C++ (not documented upstream yet)

std::vector<float, hbwmalloc::hbwmalloc_allocator<float> > vec;

aPChep Jeff Hammond ‘ epCC
Intel Parallel Computing Lab o

Fortran:
FASTMEM is Intel directive

Wrapped hbw_malloc
Call malloc directly in Fortran
https://github.com/jeffhammond/myhbwmalloc

use fortran_hbwmalloc
include 'mpif.h'
integer offset_kind
parameter (offset_kind=MPI_OFFSET_KIND)
integer (kind=offset_kind) ptr
INTEGER(C_SIZE_T) param
type (C_PTR) localptr
real (kind=8) r8
pointer (pr8, r8)
if (type.eg.'r8') then

param = 8*dim

localptr = hbw_malloc (param)
else if (type.eg.'id4') then

param = 4*dim

localptr = hbw_malloc (param)
end if

ptr = transfer(localptr,ptr)
if (type.eqg.'r8') then
call c_f_pointer(localptr, pr8)
call zeroall(dim, r8)
end if

‘ archenr

epCcc

R
Emulating MCDRAM

Using multiprocessor node can emulate MCDRAM affect
on application:
export MEMKIND_HBW_NODES=0

mpirun -n 64 numactl -m 1 -N O ./my_application

Force all application memory to be allocated on the
memory of the other processor

HBW memory will be allocated on the local memory

This will have lower latency, which isn’'t accurate

But will give an idea of the impact of higher bandwidth

epCcc

KNL

-1 .. 2 Cores, each with 2 VPU
KNL Tile:
1M L2 shared between two Cores “

Core: New Oo0O Core. Balances power efficiency, parallel and single thread
performance.

2 VPU: 2x AVX512 units. 32SP/16DP per unit. X87, SSE, AVX, AVX2 and EMU

L2: 1MB 16-way. 1 Line Read and 72 Line Write per cycle. Coherent across all Tiles

CHA: Caching/Home Agent. Distributed Tag Directory to keep L2s coherent. I\/IESIF
protocol. 2D-Mesh connections for Tile «

Avinash Sodani CGO PPoPP HPCA Keynote 2016

T
KNL

KNL Mesh Interconnect
Mesh of Rings

MCDRAM ~ MCDRAM PCle MCDRAM MCDRAM = Every row and column is a (half) ring

3 eoc t eoc t eoc ¢ * YXrouting:GoinY = Turn = Goin X

= Messages arbitrate at injection and on
turn

EDC

Tile

Tile

Tile

Cache Coherent Interconnect

B » MESIF protocol (F = Forward)

= Distributed directory to filter snoops

iMC

DDR —-——

Tile

Tile

Three Cluster Modes
(1) All-to-All (2) Quadrant (3) Sub-NUMA

MCDRAM MCDRAM MCDRAM MCDRAM Cluste ring

EDC

Avinash Sodani CGO PPoPP HPCA Keynote 2016

‘ archenr

CPCC

KNL
Cluster Mode: Quadrant

MCDRAM .MCDRAM [Pcie MCDRAM MCDRAM.

t : Chip divided into four virtual
Quadrants

Address hashed to a Directory in
the same quadrant as the Memory

DDR

Affinity between the Directory and
Memory

Lower latency and higher BW than
all-to-all. SW Transparent.

MCDRAM MCDRAM MCDRAM MCDRAM

1) L2 miss, 2) Directory access, 3) Memory access, 4) Data return

Avinash Sodani CGO PPoPP HPCA Keynote 2016

KNL
Cluster Mode: Sub-NUMA Clustering (SNC)

MCDRAM MCDRAM PCle ‘ 'MCDRAM MCDRAM

t — — 3 Each Quadrant (Cluster) exposed as a
separate NUMA domain to OS.

Tile Tile

Tile

Looks analogous to 4-Socket Xeon

 mm — - , ﬂlw“ Affinity between Tile, Directory and
Tile A : A . A ‘ — Memory
e — Local communication. Lowest latency
Tile Tile Tile Tile Tile Tile
of all modes.

SW needs to NUMA optimize to get.g

'MCDRAM MCDRAM MCDRAM MCDRAM benefit. 2

1) L2 miss, 2) Directory access, 3) Memory access, 4) Data return
Avinash Sodani CGO PPoPP HPCA Keynote 2016

‘ archenr

CPCC

KNL
Cluster Mode: All-to-All

Address uniformly hashed across all

MCDRAM MCDRAM pae | MCDRAM MCDRAM distributed directories
EDC t EDC t EDC t EDC :
T =r - S | No affinity between Tile, Directory and
| Memory
Tile Tile / ile Tile Tile Tile
Tile Tile Tile Tile Tile Tile Most genera[mode. LOWer
mc e w1 e o] performance than other modes.
IR |
Tile Tile Tile Tile Tile Tile
e Typical Read L2 miss
: = E 1. L2 miss encountered
Tile Tile Tile Tile Tile Tile
| e - 2. Send request to the distributed directory
EDC EDC Misc EDC EDC . . .
3. Missin the directory. Forward to memory
MCDRAM MCDRAM MCDRAM ~ MCDRAM 4. Memory sends the data to the req

‘ archenr

CPCC

-
Programming the KNL

Standard HPC
MPI
OpenMP
mKI
Intel compilers

Add:
—~xMIC-AVX512
Run with standard MPI job launcher Multi-KNL run
mpirun —-n 128 —-f SPBS_NODEFILE™ ./myapp

If using only 1 MPirank and OpenMP to fill up cores Probably not
If also using SNC have to enable all memory-access what will be used
numactl -m 4,5,6,7 on ARCHER

e
Configuring KNL

Different memory modes and cluster options

Configured at boot time
Switching between cache and flat mode
Switching cluster modes

More on ARCHER/Cray specific details in the third virtual
seminar in this series
Wednesday 12th October 2016 15:00

epCcc

-
Test data hardware

Intel(R) Xeon Phi(TM) CPU 7210 @ 1.30GHz
64 core
16GB MCDRAM
215W TDP
1.3Ghz TDP, 1.1Ghz AVX
1.6Ghz Mesh
6.4GT/s OPIO
96GB DDR4@2133 MT/s

epCcc

((/
oy
~
o
<

0
&
OTNBY

T
GS2 on KNL

GS2 ported and run on KNL:
Small test cases: sweet spots: 1,2,4,8,16,32,176,352,....

ARCHER 2.10 minutes (24 cores) (7% imbalance)

KNL without fast mem 3.08 minutes (64 cores) (20% imbalance)
KNL with fast mem 1.74 minutes (64 cores)

KNL in cache mode 1.76 minutes (64 cores)

Broadwell 1.38 minutes (36 cores)

epCcc

-
GS2 Port to KNC Xeon Phi

Profiling of vectorisation of GS2 shows good performance

Pure MPI code performance

ARCHER (2x12 core Xeon E5-2697, 16 MPI processes): 3.08
minutes

Host (2x8 core Xeon E5-2650, 16 MPI processes): 4.64 minutes
1 Phi (176 MPI processes): 7.34 minutes

1 Phi (235 MPI processes): 6.77 minutes

2 Phi’'s (352 MPI processes): 47.71 minutes

Hybrid code performance

1 Phi (80 MPI processes, 3 threads each): 7.95 minutes
1 Phi (120 MPI processes, 2 threads each): 7.07 minutes

epcc

T
CASTEP

MgSiO4-Geom benchmark:
ARCHER: 24 cores

Total time = 102.27 s
KNL: 24 cores

Total time = 156.63 s
KNL: 64 cores

Total time = 149.65s
KNL: 64 cores cache mode

Total time = 146.88 s
Broadwell: 36 cores

Total time = 38s

epCcc

T
CP2K

H20-64 benchmark for 1 time step on KNL - compare versions

800 T T T T
"POPT onglnal ——
POPT with libxsmm
700 POPT with libxsmm & fastmem >|< -
SSMP original --{-}-
SSMP with libxsmm
600 SSMP with libxsmm & fastmem]
PSMP (4 threads) original -- -@ -

— PSMP (4 threads) with libxsmm — A— -
3 500 PSMP (4 threads) with libxsmm & fastmem - & - 1
3
()
a
o 400 -
E
S
& 300 -
o

200 -

100 F .

0 1 L 1] 1 1 1 1 L
0 20 40 60 80 100 120 140 160 180 200
Results courtesy of Fiona Reid Number of cores used

‘ archenr

epcc|

(: P2 K H20-64 benchmark for 1 time step - comparing KNL and KNC

3000 . , :
KNL: POPT —+—
KNC: POPT
[KNL: SSMP -3~
2500 [KNC: SSMP (-]
: KNL: PSMP (4 threads)
KNC: PSMP (4 threads)
KNC: PSMP (15 threads) -~ @ - -
@ 2000 | i
o :
c :
Q ;
O :
o :
> 1500} |
E
3 =
G 1000 | L -
D |
500 -
. A .* ® ®
0 ' ' : ! -
0 50 100 150 200 250
Results courtesy of Fiona Reid Number of cores used

‘ archenr

-
LU factorisation (KNC)

Relative performance ARCHER node to one Xeon Phi

m Relative performance (>1 Xeon Phi better, <1 ARCHER

2.5
better)

Relative Performance Ratio
" o
v N
O
\700
o

e
LU Factorisation

Relative performance ARCHER node to one Knights Landing Xeon Phi
9 (>1 Xeon Phi better, <1 ARCHER better)

EmSIMD mlivdep mCilk MKL

0 || || || ||| || || | |I || ‘ll ‘ll
v S S o

8’ \ bQ’ ’b 0
)
N b (b\ \fb\ A R R ONLVE
i&/ & & N $ N & »
N @ @
2 5

Performance Ratio
N S (9] (o)} ~

[N

e
LU factorisation

Comparison between 64 and 64 with HBM

12 1> HBM threads better
. mivdep mSIMD mCilk m MK
o o8
©
o
(]
e
o 06
£
N
& 0.4
0
N
. . e O
b (QQ/ @@ k’b\

MPI Performance - PingPong

10000
=l=Host latency 2 procs
=¢=KNC latency 2 procs j
1000
Host latency 16 procs
==K NC latency 240 procs
- =#=KNL latency 64 procs
©
S 100
(=]
-4
(7]
o
=
=
E
>
w
e 10
2z
[
-
1 - \ 1
oSt 0 O Gt W W N S W © N o W W N
m X} o LD, — o < Q [€)] co w0 [40] M~ < o0 P~ LN (@]
St N O O O o M N 1N O o N 1 oo m
— & g o0 O o w1 A o 0 M~ =
— 0 O mm O N F O O
— ™~N mn O O
— o~ <t
0.1

Message size (Bytes)

epcc| |

e
MPI Performance - Allreduce

MPI_Allreduce KNC and host

1000000

==Host 16 procs
100000 P Pl
=0=KNC 60 procs

10000 KNC 120 procs /*/0'&

m)
o
g == [(NC 240 procs
(=]
& 1000
=}
=
8
_§, 100 - e\ —
o
E
=
v 10 -
(1
c
>
4 1__1'\\\IIII\I\\I\II\I\\I\I
'@/ﬂmmmqmmm#mmmﬁmmm#mmm#
— @ W N ;N d N F @ O w0 W @ M~ S 0 M~ N O
= o n O O O = MM ™~ mn O — ™o w|m = m
— N 5 0 W N N N e M~
L d R R A = G =
— o <t

Message size (bytes)

epcce

Performance - Allreduce

Average time (microseconds)

1000000

100000

10000

1000

100

10

0.1

MPI_Allreduce KNC, KNL and host

Message size (bytes)

=l=Host 16 procs
=p=KNC 60 procs
=e=KNC 120 procs
=>=KNC 240 procs
=0=KNL 2 procs
KNL 4 procs
KNL 8 procs
KNL 16 procs
KNL 32 procs

=#=KNL 64 procs

MPI Performance — PingPong — Memory modes

3500

3000 =3#=KNL Bandwidth 64 procs "

=O=KNL Fastmem bandwidth
64 procs

N
Ul
o
o

[EEN
Ul
o
o

[EEN
o
o
o

PingPong Bandwidth (MB/s)

500

[LY R . S . S i . 4

O_‘Clulvlu\ulvlwl_ul T T T T T T T T T T I T T T T 1

O =1 N < 00 O N < 00 O N < 00 O N < 00 U N < 0 OV

4 Mm O N 1N 4 N < O OO 00 U M N < 0 NN N

— &N 1N O O O = 0O ~N 1IN O «« &N uIn «l

— AN < 00 O N N +H N < o0 N

— n O M O N < O

— &N 1" O O

—

Message size (Bytes)

©)orcher

(D
5
Q
O

MPI

Latency (microseconds)

10000

1000

100

10

Performance — PingPong — Memory modes

== KNL latency 64 procs

=0=KNL Fastmem latency 64 procs

KNL cache mode latency 64 procs

O o &N < 00 O &N < 0 O N <& 00 O N < 0 O N < 00 O NN <
Mmn O N 1N d N < OO OO 0 O MNn NN < 0NN in O

= N 1IN O O O «wW M N 1IN O <« &N "N « om

— N < 00 O N N H N < 0 N

1 n O N O N < O O

- N 1N O O

— N <

Message size (Bytes)

MPI_Allreduce KNL different memory modes for 2 and 64 processor

benchmarks
100000
=0=KNL 2 procs KNL 2 procs fastmem
10000 KNL 2 procs cache mode KNL 64 procs

KNL 64 procs fastmem == KNL 64 procs cache mode

1000

100

Average time (microseconds)

I I I ! ! I ! ! ! I ! ! ! T T] ! ! I I 1

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

0.1

Message size (bytes)

epCcc

T
ARCHER KNL

12 KNLs in test system

Should be available mid-October
ARCHER users get access
Non-ARCHER users can get access through driving test

Initial access will be unrestricted
After first month will be budgeted

More details in the next virtual seminar(s)

eCSE funding for KNL porting/optimisation
Next virtual tutorial: Wednesday 21 Sept 2016 15:00
Using ARCHER KNL: Wednesday 12th October 2016 15:00

epcc

T
EPCC IPCC

EPCC has IPCC collaboration with Intel
Working on porting and optimising codes on Xeon Phi
Training and support of Xeon Phi

Get in touch if you've got any questions, or something
you'd like to collaborate on

((/
<
~
o
<

epCcc

Goodbye

Virtual tutorial has finished
Please check here for future tutorials
and training
http://www.archer.ac.uk/training
://www.archer.ac. uk/tralnlng/wrtual/

epCcC| @

