
libcfd2lcs: A general purpose library for computing Lagrangian coherent

structures during CFD simulations

Justin Finn

School of Engineering, University of Liverpool

Email: J.Finn@liverpool.ac.uk • URL: http://pcwww.liv.ac.uk/˜finnj/

ARCHER Virtual Tutorial

June 22, 2016

mailto:J.Finn@liverpool.ac.uk
http://pcwww.liv.ac.uk/~finnj/

Lagrangian Coherent Structures (LCS)

“The structures are invisible because they often exist only as dividing lines

between parts of a flow that are moving at different speeds and in different

direction... They arent something you can walk up to and touch but they are

not purely mathematical constructions, either... The line is not a fence or a

road, but it still marks a physical barrier.”

-Prof. Jerry Marsden discussing LCS, New York Times, September 28, 2009

Lagrangian Coherent Structures are “The skeleton of water”

-The Economist, 2009, discussing work titled ‘‘Uncovering the Lagrangian Skeleton of Turbulence”

[Mathur et al. PRL 2009]

Justin Finn libcfd2lcs virtual tutorial 1

Flow Coherence: Eulerian & Lagrangian

Even chaotic flows display remarkable levels of coherence. How this coherence looks,

and what it means for transport and mixing, depends on our frame of reference.

Eulerian: Observe the flow from a fixed location

Lagrangian: Follow fluid parcels through space/time

Example: Time dependent “double gyre” flow [Solomon and Gollub, 1988]

Justin Finn libcfd2lcs virtual tutorial 2

Flow Coherence: Eulerian & Lagrangian

Even chaotic flows display remarkable levels of coherence. How this coherence looks,

and what it means for transport and mixing, depends on our frame of reference.

Eulerian: Observe the flow from a fixed location

Lagrangian: Follow fluid parcels through space/time

Example: Time dependent “double gyre” flow [Solomon and Gollub, 1988]

Figure : Steady flow, no oscillation Figure : Small transverse oscillation

Justin Finn libcfd2lcs virtual tutorial 2

Flow Coherence: Eulerian & Lagrangian

Even chaotic flows display remarkable levels of coherence. How this coherence looks,

and what it means for transport and mixing, depends on our frame of reference.

Eulerian: Observe the flow from a fixed location

Lagrangian: Follow fluid parcels through space/time

Example: Time dependent “double gyre” flow [Solomon and Gollub, 1988]

Figure : Steady flow, no oscillation Figure : Small transverse oscillation

If we want to understand time dependent transport patterns, we
should consider Lagrangian coherent structures (LCS).

Justin Finn libcfd2lcs virtual tutorial 2

Outline

This talk...

libcfd2lcs: A general purpose library for computing Lagrangian coherent structures

during CFD simulations

1 Background: What are LCS,and how do we compute them?

2 The libcfd2lcs approach: Integrating LCS computation with CFD simulation

How to develop applications that use the library
Key library functions that every libcfd2lcs application will use.

3 Demonstrations of what the library can do

What this talk wont be...

Detailed overview of LCS theory & applications: Several excellent reviews

available:

[Haller, 2015, Peacock et al., 2015, Peacock and Dabiri, 2010, Samelson, 2013]

An complete, step by step guide for using the library. See the libcfd2lcs user’s

manual and example programs:

http://pcwww.liv.ac.uk/˜finnj/code

Justin Finn libcfd2lcs virtual tutorial 3

http://pcwww.liv.ac.uk/~finnj/code

Properties of LCS

Starting roughly with [Haller, 2001], the notion of LCS has been refined

Unsteady and turbulent flows have a hidden skeleton which defines
mixing patterns.

This skeleton defines boundaries of dynamically distinct regions within
which tracer patterns behave similarly.

This skeleton is defined by the locally most attracting or repelling
hyperbolic material lines (or surfaces in 3D), across which no
transport can occur.

Can be constructed with detailed simulation or experimental data.
[Shadden et al., 2005]

Lots of new insights:

(a) Hind-casting the movement of the Deepwater Horizon oil slick [Olascoaga and Haller, 2012]

(b) Atmospheric events [Lekien and Ross, 2010] (c) Granular mixing [Christov et al., 2011]

Justin Finn libcfd2lcs virtual tutorial 4

Computing LCS diagnostics: Example, FTLE

A number of LCS diagnostics have been proposed: FTLE is imperfect, but common

1 Release a grid of tracers and see where they go: Provides the flow map,

Φ(x0, t0,)

Φ
t1
t0
(x0, t0) = x0 +

∫ t1

t0

u(x(τ), τ)dτ (1)

2 Differentiate the flow map W.R.T. x0: compose right C.G. deformation tensor, ∆

∆
t1
t0
(x0, t0) =

[

dΦ
t1
t0
(x0, t0)

dx0

]

∗
[

dΦ
t1
t0
(x0, t0)

dx0

]

, (2)

⇓ Most (all?) LCS diagnostics

3 Compute the maximum finite-time Lyapunov exponent (FTLE) field.

σ
t1
t0
(x0, t0) =

1

|t1 − t0|
log

√

λmax(∆
t1
t0
(x0, t0)), T = t1 − t0 (3)

4 Detect FTLE ridges visually or analytically: Forward time ridges ⇒ repelling

LCS. Backward time ridges ⇒ attracting LCS [Haller, 2001, Shadden et al., 2005].

More recent theory has moved beyond FTLE based diagnostics, but preliminary

(expensive) steps remain.

Justin Finn libcfd2lcs virtual tutorial 5

Computational challenges

Typical Approach: Algorithmically simple, computationally

expensive post-processing

Program reads velocity fields produced from exp/sim

Potentially enormous number of particle advections

Need to store lots of velocity fields

Need to re-compute flow map for every instant LCS are

needed (think of animating their movement)

Speedup possible:

AMR [Miron et al., 2012]

Ridge tracking [Lipinski and Mohseni, 2010]

GPU acceleration [Conti et al., 2012]

Re-use of flow maps [Brunton and Rowley, 2010]

Integration with CFD [Finn and Apte, 2013]

LCS during startup of vortex shedding

behind a cylinder

Justin Finn libcfd2lcs virtual tutorial 6

The integrated approach [Finn & Apte, Chaos 2013]

Ditch post processing and compute LCS on-the-fly!
Fwd/Bkwd FTLE computed as simulation evolves
Requires taking advantage of a few tricks

Flow map composition rule [Brunton and Rowley, 2010]
Eulerian computation of backward time flow maps [Leung, 2011]

Modest overhead relative to cost of unsteady CFD (20-30% of simulation)

Advantages:

Harness large scale parallelism available on HPC systems like ARCHER

Excellent space/time resolution (minimal interpolation errors)

Tackle larger, more complex flows using LCS in greater detail than before

CFD and HPC capabilities will continue to grow!

Figure : FTLE field computed from a turbulent flow through a packed bed

Justin Finn libcfd2lcs virtual tutorial 7

libcfd2lcs: General purpose numerical library for integrated LCS
computations

Key capabilities:

Easy to use, flexible API, requires little modification to many existing CFD solvers

Allow any number of LCS diagnostics to be computed simultaneously.

Compatible with structured grids (orthogonal, or non-orthogonal)

User specified grid refinement

Can be called from C/C++/Fortran

Distributed memory, has been tested on up to 4096 cores on ARCHER.

Add new LCS diagnostic types with modular, extensible source code

Justin Finn libcfd2lcs virtual tutorial 8

Getting libcfd2lcs

libcfd2lcs is installed on ARCHER and available to all users

>> module swap PrgEnv-cray PrgEnv-gnu (Most tested environment)

>> module load cray-hdf5-parallel (For parallel I/O)

>> module load libcfd2lcs/1.0 (Load libcfd2lcs)

Non ARCHER users...

The library, users manual, and example programs (C & F90) available at:

http://pcwww.liv.ac.uk/˜finnj/code.html

Minimal dependencies to install on your own workstation/HPC system.

mpif90, mpicc

liblapack

hdf5 (optional, but recommended)

Basic build instructions and Makefile provided

Distributed under the terms of the GNU Public License

Justin Finn libcfd2lcs virtual tutorial 9

http://pcwww.liv.ac.uk/~finnj/code.html

Compiling your application with libcfd2lcs

Environment variables for easy compilation

Include the libcfd2lcs environment definitions in your application’s Makefile

include $(CFD2LCS HOME)/Makefile.in (On ARCHER)

include /path/to/your/libcfd2lcs/Makefile.in (In General)

Add the include path $(CFD2LCS INC) when compiling object files. For example:

mpif90 -c -O3 $(CFD2LCS INC) your code.f90

Add the single (SP) or double (DP) precision libraries to your link line:

mpif90 -o YOUR APPLICATION your code.o $(CFD2LCS SP LIBS)

mpif90 -o YOUR APPLICATION your code.o $(CFD2LCS DP LIBS)

Include one of the libcfd2lcs header files in the area of your source code that

interfaces with libcfd2lcs:

F90 Syntax (single prec): INCLUDE cfd2lcs inc sp.f90

F90 Syntax (double prec): INCLUDE cfd2lcs inc dp.f90

C Syntax (single prec): #include "cfd2lcs inc sp.h"

C Syntax (double prec): #include "cfd2lcs inc dp.h"

Justin Finn libcfd2lcs virtual tutorial 10

Developing applications that use libcfd2lcs

Easiest way is to follow the examples in /libcfd2lcs/examples directory

Pseudo-code:

1 Start Of User’s Application

2 INCLUDE cfd2lcs inc sp.f90

3 Establish user’s grid coordinates

4 Establish user’s boundary conditions

5 Establish user’s domain decomposition

6 call cfd2lcs init(mpicomm,n,offset,x,y,z,bcflag)

7 call cfd2lcs set option(option,val)

8 call cfd2lcs set param(param,val)

9 call cfd2lcs diagnostic init(id,type,res,T,H,label)

10 t = tstart ;

11 while t < tfinish do

12 Establish new velocity field at time t

13 call cfd2lcs update(n,u,v,w,t,cfl)

14 if Done With Diagnostic then

15 call cfd2lcs diagnostic destroy(id);

16 t = t + dt

17 call cfd2lcs finalize()

18 End Of User’s Application
Justin Finn libcfd2lcs virtual tutorial 11

cfd2lcs init: Initialize communications & memory

F90 Syntax: call cfd2lcs init(comm,n,offset,x,y,z,bcflag)

C/C++ Syntax: cfd2lcs init c(comm,n,offset,x,y,z,bcflag);

Arguments

comm: Global mpi communicator in the user’s

application

n: Vector of 3 integers defining the local

number of grid points in X,Y,Z directions

offset: Vector of 3 integers defining each

processors offset in the the globally structured

array.

x, y, z: Arrays of size n[1]*n[2]*n[3]

containing the Cartesian coordinates of each

grid point.

bcflag: Array of size n[1]*n[2]*n[3]

containing a per-grid point boundary condition.

LCS INTERNAL, LCS WALL, LCS SLIP,

LCS MASK, LCS OUTFLOW, LCS INFLOW.

n=[4,8]]
offset=[4,0]

n=[4,8]]
offset=[0,0]

n=[4,8]]
offset=[4,4]

n=[4,8]]
offset=[0,4]

Justin Finn libcfd2lcs virtual tutorial 12

cfd2lcs diagnostic init: Initializes an LCS diagnostic to compute

F90 Syntax: call cfd2lcs diagnostic init(id,type,res,T,h,label)

C/C++ Syntax: id = cfd2lcs diagnostic init c(type,res,T,h,label);

Arguments

id: An integer handle created by the library for

each diagnostic (output arg)

type: The type of LCS diagnostic to initialize.

Present options are FWD FTLE, BKWD FTLE,

LP TRACER

res: The resolution of the LCS tracer grid,
relative to the application’s grid.

res = -ve integers ⇒ remove grid points
res = +ve integers ⇒ insert grid points
res = 0 ⇒ Use the application’s grid

T: The LCS diagnostic integration time

h: Interval to compute/write the LCS diagnostic

label: A string to identify the diagnostic

Res = -1

CFD Grid, Res = 0

Res = +1

Example:

call cfd2lcs diagnostic init(id 1, ’BKWD FTLE’, 8.0, 1.0, ’LCS 1’)

Justin Finn libcfd2lcs virtual tutorial 13

cfd2lcs set option: Set the value of a libcfd2lcs option

F90 Syntax: call cfd2lcs set option(option,value)

C/C++ Syntax: cfd2lcs set option c(option,value);

Arguments

option: A string matching one of the user accessible libcfd2lcs options

val: An integer constant corresponding to a possible option

Example

call cfd2lcs set option(’INTEGRATOR’, RK3)

call cfd2lcs set option(’INTERPOLATOR’,LINEAR)

All user options and possible values are explained in the libcfd2lcs user’s manual!

Justin Finn libcfd2lcs virtual tutorial 14

cfd2lcs update: Update all LCS diagnostics

F90 Syntax: call cfd2lcs update(n,u,v,w,time)

C/C++ Syntax: id = cfd2lcs update c(n,u,v,w,time);

Arguments

n: Vector of 3 integers defining the local number of grid points for each processor.

u,v,w,: Arrays of size n[1]*n[2]*n[3] containing the X,Y,Z components of

velocity.

time: The current simulation time

Justin Finn libcfd2lcs virtual tutorial 15

Runtime Output

Some information provided to stdout after every call to cfd2lcs update

Justin Finn libcfd2lcs virtual tutorial 16

Data Output

All results are written to a directory called cfd2lcs output.

A new file is written for each LCS diagnostic at every time interval, h.

Two I/O models are possible:

Parallel I/O with hdf5 (single file, multiple writers)
Set HDF5 SUPPORT = ‘‘TRUE’’ in Makefile.in when building libcfd2lcs.

Serial I/O (Single file, single writer)
Set HDF5 SUPPORT = ‘‘FALSE’’ in Makefile.in when building libcfd2lcs.

Both file formats readable by common visualization programs (matlab, tecplot, etc)

Justin Finn libcfd2lcs virtual tutorial 17

Many new flows can be studied with libcfd2lcs!

Straightforward integrations into a variety of flow solvers

Successful integrations:

Pseudo-spectral turbulence

simulations (With R.

Watteaux)

Rayleigh-Taylor Instability

(With A. Lawrie)

Sediment Transport (U.

Liverpool)

Post-processing of Regional

Ocean Model simulations

(ROMS) (With R. Watteaux)

LCS overhead is roughly

30-50% of the simulation

(depending on parameters,

solver, etc).

Figure : 128x128x256 Jet simulation with MOBILE

Justin Finn libcfd2lcs virtual tutorial 18

Many new flows can be studied with libcfd2lcs!

Straightforward integrations into a variety of flow solvers

Successful integrations:

Pseudo-spectral turbulence

simulations (With R.

Watteaux)

Rayleigh-Taylor Instability

(With A. Lawrie)

Sediment Transport (U.

Liverpool)

Post-processing of Regional

Ocean Model simulations

(ROMS) (With R. Watteaux)

LCS overhead is roughly

30-50% of the simulation

(depending on parameters,

solver, etc).

Figure : Tyrrhenian sea ROMS sea surf. dataset

Justin Finn libcfd2lcs virtual tutorial 18

Summary

libcfd2lcs

A new platform for computing Lagrangian coherent structures

Can be integrated into your own MPI CFD solver or post processing utility

Simple, easy to use interface can be called from C/C++/F90

Lots of new applications to explore with HPC and new CFD codes.

Future plans

Inertial particles

New Diagnostics, keeping up with rapidly developing LCS theory.

More Information http://pcwww.liv.ac.uk/˜finnj/code.html

Justin Finn libcfd2lcs virtual tutorial 19

http://pcwww.liv.ac.uk/~finnj/code.html

Acknowledgments

This work was funded under the embedded CSE programme of the ARCHER UK

National Supercomputing Service (http://www.archer.ac.uk).

Collaboration with Romain Watteaux (Stazione Zoologica Anton Dohrn, Naples)

and Andrew Lawrie (University of Bristol).

Justin Finn libcfd2lcs virtual tutorial 20

http://www.archer.ac.uk

Bibliography I

[Brunton and Rowley, 2010] Brunton, S. and Rowley, C. (2010).

Fast computation of finite-time Lyapunov exponent fields for unsteady flows.

Chaos, 20(1):017503.

[Christov et al., 2011] Christov, I., Ottino, J., and Lueptow, R. (2011).

From streamline jumping to strange eigenmodes: Bridging the Lagrangian and Eulerian pictures of the kinematics of mixing in granular flows.

Physics of Fluids, 23:103302.

[Conti et al., 2012] Conti, C., Rossinelli, D., and Koumoutsakos, P. (2012).

GPU and APU computations of finite time Lyapunov exponent fields.

Journal of Computational Physics, 231(5):2229–2244.

[Finn and Apte, 2013] Finn, J. and Apte, S. V. (2013).

Integrated computation of finite time Lyapunov exponent fields during direct numerical simulation of unsteady flows.

Chaos, 23(1):013145.

[Haller, 2001] Haller, G. (2001).

Distinguished material surfaces and coherent structures in three-dimensional fluid flows.

Physica D: Nonlinear Phenomena, 149(4):248–277.

[Haller, 2015] Haller, G. (2015).

Lagrangian coherent structures.

Annual Review of Fluid Mechanics, 47:137–162.

[Lekien and Ross, 2010] Lekien, F. and Ross, S. (2010).

The computation of finite-time Lyapunov exponents on unstructured meshes and for non-Euclidean manifolds.

Chaos, 20(1):017505–1.

[Leung, 2011] Leung, S. (2011).

An Eulerian approach for computing the finite time Lyapunov exponent.

Journal of Computational Physics, 230(9):3500–3524.

[Lipinski and Mohseni, 2010] Lipinski, D. and Mohseni, K. (2010).

A ridge tracking algorithm and error estimate for efficient computation of Lagrangian coherent structures.

Chaos, 20(1):017504–1.

[Miron et al., 2012] Miron, P., Vétel, J., Garon, A., Delfour, M., and Hassan, M. (2012).

Anisotropic mesh adaptation on Lagrangian coherent structures.

Journal of Computational Physics.

Justin Finn libcfd2lcs virtual tutorial 21

Bibliography II

[Olascoaga and Haller, 2012] Olascoaga, M. J. and Haller, G. (2012).

Forecasting sudden changes in environmental contamination patterns.

Proc. National Acad. Sci., 109:4738–4743.

[Peacock and Dabiri, 2010] Peacock, T. and Dabiri, J. (2010).

Introduction to focus issue: Lagrangian coherent structures.

Chaos, 20(1):017501.

[Peacock et al., 2015] Peacock, T., Froyland, G., and Haller, G. (2015).

Introduction to focus issue: Objective detection of coherent structures.

Chaos, 25(8):7201.

[Samelson, 2013] Samelson, R. (2013).

Lagrangian motion, coherent structures, and lines of persistent material strain.

Annual review of marine science, 5:137–163.

[Shadden et al., 2005] Shadden, S., Lekien, F., and Marsden, J. (2005).

Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows.

Physica D: Nonlinear Phenomena, 212(3-4):271–304.

[Solomon and Gollub, 1988] Solomon, T. and Gollub, J. (1988).

Chaotic particle transport in time-dependent Rayleigh-Bénard convection.

Physical Review A, 38(12):6280.

Justin Finn libcfd2lcs virtual tutorial 22

