Introduction to Version Control

- Practical -

©)>roner

cpCC

15 June 2015

Before starting this practical

We recommend that before working through this practical you watch the first
ARCHER virtual tutorial on version control as well as the accompanying live
demonstration of Subversion (SVN), available from the links provided below.

Virtual Tutorial - Introduction to Version Control (Part 1):
https://www.youtube.com/watch?v=S2iddvouVyw

Live demonstration of SVN:
https://www.youtube.com/watch?v=V53NGLpul-A

Introduction and Aims

The aim of this practical is to allow you to gain hands-on experience creating a
repository and using a version control system to manage your files. You will learn
how to branch, merge, and resolve conflicts. You will do this using Subversion (SVN)
- the version control system demonstrated during the first virtual tutorial. The
practical will teach you how to start using this tool and how to deal with some of the
practicalities surrounding version control.

Practical

Version control from the command line

In this practical we will be using SVN from the command line. Although a web-based
interface or a standalone application with a graphical interface can be convenient it
may hide the direct commands issued to the version control system as well as any
error messages it returns. By using these tools directly from the command line we
get a clear picture of how they work, how to interpret any errors, and what to do
when something unexpected happens. We also learn how to access the built-in help
system to figure out or simply remind us how to accomplish a given task.

If your own machine does not already have SVN installed (e.g. if you are using
Windows) or if you encounter any problems with the versions installed on your
machine you can log on to ARCHER and perform the practical there.

Example content used in this practical

For the purposes of this practical we want to use example content that is easily
understood and that helps illustrate the principles and practice of version control.
Instead of source code the example content that we will place under version control
consists of culinary recipes. This is not so arbitrary or frivolous because as well as
being easily understood there are analogies between recipes and code that make it a
useful choice. Cooking instructions are like an algorithm, and the ingredients used
are like variables. We will split each recipe over two separate files:

1. recipe.instructions: cooking instructions

2. recipe.ingredients: list of ingredients

For a given recipe every ingredient used in the instructions must appear in the
corresponding list of ingredients, just as the variables used in a piece of code must
be declared. Matching instructions and ingredients files for a recipe should
therefore be committed at the same together to the repository, otherwise a person
trying to use that version of the recipe will not be able to cook it due to missing
ingredients or be wastefully stuck with unused ingredients. This is analogous to not
being able to compile a version of a set of source code files because not all
dependencies are met, or receiving warnings because declared variables go unused.
Hence introducing this simple dependence between recipe files makes our use of
version control more representative of managing real code.

Create a repository

Imagine you are writing a cookbook and plan to go through a process of
experimentation, trying different variations for each recipe. At the end of this
process you want to be able to choose which versions of recipes to publish. The first
step in this practical is to create a repository to keep track of the different versions
of recipes.

In the live demonstration we dealt with an existing Subversion repository, thereby
neatly circumventing the question of how one creates one in the first place. If you
type svn help to show a list of available Subversion commands you will not see
any command that looks like it can be used to do this. In fact there exists a separate
utility called svnadmin that is used to create and administer Subversion
repositories, however using svnadmin requires more detailed explanation than we
want to provide here, and would take more effort to use than we think is reasonable
for a first-time SVN user.

If your own institution provides Subversion hosting this is the perfect opportunity
to sign up and familiarise yourself with the service and use it to create a repository
(call it “recipes”) for this practical, noting down the URL at which your repository is
accessible. Otherwise for the purposes of this practical you can make use of a
website that hosts Subversion repositories called Assembla. You will need to visit
http://www.assembla.com and create a free trial account. When prompted to
“Name your space” during the signup process choose “uname-recipes” (replacing
“uname” with your username) - this will be the name of your repository. Choose
“Add a Subversion repository”. Your repository will be available at
https://subversion.assembla.com/svn/uname-recipes/. If at any point you find you
have lost control or understanding of the state of the repository and want to start
the practical again with a clean repository you can always delete it on the website
and create a new one.

Check out a working copy

Next, open a terminal window on your machine or on ARCHER and navigate to a
directory where you are happy for a local working copy of the repository to live.
Check out the repository by doing

svn checkout --username uname
https://subversion.assembla.com/svn/uname-recipes/

(one line), replacing uname with your Assembla username. If you are asked to accept
a server certificate choose “p” for “(p)ermanent”, and enter your Assembla
password. You should see the following notification of directories and files that

were added (A) to your working copy:

uname-recipes/tags
uname-recipes/trunk
uname-recipes/branches
uname-recipes/readme.textile
Checked out revision 1.

> > > >

The trunk directory is typically where one begins adding content. Playing the role
of a main, or master branch, it often ends up containing the most important, most
permanent or most accepted versions of content. It typically functions as the
primary content from which other branches, usually located in the branches
directory, are derived. In the context of software development the trunk usually
contains the source code for the full stable version of the software, while other
branches are used to develop and test new features, some of which are later
integrated back into trunk by merging.

It is worth mentioning that although SVN repositories are initialised by default to
contain trunk, branches and tags directories, this is purely a convention. It is not
strictly necessary and in no way enforced, and you are free in principle to create a
different repository structure. For the purpose of this practical we will stick with the
convention.

Enter the trunk directory and, using your preferred text editor, create two files:
guacamole.ingredients and guacamole.instructions. Edit these files to
contain the basic recipe given here:

guacamole.ingredients:

Avocados

guacamole.instructions:

Mash avocados

We would like to record our basic recipe in the repository. Although we’ve placed
these files within a folder in the working copy of the repository we still need to
explicitly tell SVN that we want to place these files under version control, i.e. that we
want to add them to the repository:

svn add guacamole.ingredients guacamole.instructions
A guacamole.ingredients
A guacamole.instructions

Looking at svn help add reveals that we still need to commit these files before
they are actually recorded in the repository:

svn help add

add: Put files and directories under version control, scheduling
them for addition to repository. They will be added in next
commit.

When giving the command to commit these files we must include a commit message
using the -m option followed by a string. We may need to specify our Assembla
username using the --username option, though SVN should remember this from
before.

svn commit -m “Added basic guacamole recipe”
Adding guacamole.ingredients

Adding guacamole.instructions
Transmitting file data

Committed revision 2.

A note about committing: by default svn commit will commit all changes to files
already under version control located in the current working directory and its
subdirectories. What these changes are can be shown using svn status. However
you are free to select only the changes to particular files to be committed by
specifying those files after the commit command.

If we now update our working copy:
svn update

Updating '."':

At revision 2.

We will see our commit shown in the log:

r2 | uname | 2015-06-16 06:46:02 +0100 (Tue, 16 Jun 2015) | 1 line

Added basic guacamole recipe

rl | www-data | 2014-08-26 21:22:14 +0100 (Tue, 26 Aug 2014) | 1 line

Automatically created readme.textile and /trunk, /branches, /tags
directories. We recommend you to put all your code there.

We quickly realise that we can improve on our basic recipe by adding the following
lines to each file:

guacamole.ingredients:

Avocados
Lime juice
Salt

guacamole.instructions:

Mash avocados
Stir through lime juice
Stir through salt

Looking at the status:

svn status

M guacamole.ingredients
M guacamole.instructions

We can see that SVN knows we’ve made these changes (“M” stands for modified) so
a simple commit will record them and bring the repository to revision number 3:

svn commit -m “Improved basic guacamole recipe by adding salt and
lime juice”

We can examine our most recent commit in the log (using --verbose to provide extra
information):

svn log -1 1 --verbose

r3 | uname | 2015-06-16 ©6:51:49 +0100 (Tue, 16 Jun 2015) | 1 line
Changed paths:

M /trunk/guacamole.ingredients

M /trunk/guacamole.instructions

Improved basic guacamole recipe by adding salt and lime juice

Branching

Starting with this improved basic recipe we now want to experiment with some
additions and develop the recipe in a particular direction - perhaps to explore what
we think are some authentic flavours. However we’re not sure whether we’re going
to like this new recipe and hence whether we want to keep it at all and want it to be
recorded in trunk for eventual publication in the cookbook. So we create a branch
called authentic consisting of a copy of the basic guacamole recipe stored in
trunk, and place it in the branches directory. In SVN this is done using the copy
command, for which there are several usage options:

svn help copy

copy (cp): Copy files and directories in a working copy or
repository.

usage: copy SRC[@REV]... DST

SRC and DST can each be either a working copy (WC) path or URL:
WC -> WC: copy and schedule for addition (with history)
WC -> URL: immediately commit a copy of WC to URL
URL -> WC: check out URL into WC, schedule for addition
URL -> URL: complete server-side copy; used to branch and tag

Using the fourth option, i.e. giving repository URLs for both source (SRC) and
destination (DST), is recommended for branching. This tells SVN to perform a copy
directly in the repository, i.e. on the server where the repository is located, rather
than in our working copy. Instead of specifying the entire Assembla URL we can use
the caret symbol “*”. This is an SVN shorthand for the URL of the repository root, in
this case https://subversion.assembla.com/svn/aproeme-recipes/.

svn copy “~/trunk ~/branches/authentic -m “Creating authentic
guacamole branch”

Alternatively we could have chosen both source and destination to be in our local
working copy:

svn copy trunk branches/authentic

However this would have required a separate commit afterwards to record the
change, and more importantly the URL = URL option is faster especially when large
numbers of files are concerned.

Note that if trunk had also contained other recipes we would have issued a copy
command just for the guacamole files instead of for all of trunk, although in another
situation we may actually want to create a branch containing copies of all recipes in
trunk, for example a vegetarian branch containing meat-free versions of all recipes.

Before proceeding we should again bring our working copy up to date with the
repository. Like many SVN commands the update command only operates on the
current working directory and its subdirectories. In order to update the working
copy with the changes made to the branches directory in the repository this
command should therefore be issued in or above the branches directory in the
working copy - if it is run in trunk it will not actually update our working copy with
the new branch. The last entry in the log shows that the authentic directory was
created based on the state of trunk in revision 3:

svn log -1 1 --verbose

r4 | uname | 2015-06-16 ©7:05:17 +0100 (Tue, 16 Jun 2015) | 1 line
Changed paths:
A /branches/authentic (from /trunk:3)

Creating authentic guacamole branch

Now enter branches/authentic and modify the guacamole recipe so it reads:
guacamole.ingredients:

Avocados
Salt

Lime juice
Onion
Tomato
Coriander

guacamole.instructions:

Mash avocados

Stir through salt

Stir through lime juice
Add chopped onion

Add chopped tomato

Add chopped coriander

Commit these changes with an appropriate commit message.

Merging

We like this recipe so much that we plan on including it in our cookbook. The final
cookbook recipes will all be taken from trunk, so we want to merge the authentic
guacamole recipe back into trunk. From looking at svn help merge it is clear
there are a number of ways to do this. Since the authentic branch only contains

changes to the guacamole recipe, the easiest way is simply to merge the entire
branch into trunk:

svn merge ~/branches/authentic trunk

Although the source is the URL of the checked in version of authentic in the
repository, unlike for branching the destination is trunk in our working copy. The
reason for this is that merging can lead to conflicts, which need to be resolved. This
is tackled within our working copy, and once done the resolved version can be
committed to the repository.

The result of the above merge command is

--- Merging r4 through r5 into 'trunk':

U trunk/guacamole.instructions

U trunk/guacamole.ingredients

--- Recording mergeinfo for merge of r4 through r6 into 'trunk’:
U trunk

This tells us that the two files in trunk as well as some metadata about how the
repository has changed (mergeinfo) have been updated (U). If we examine the
status of trunk:

svn status trunk

M trunk
M trunk/guacamole.ingredients
M trunk/guacamole.instructions

we see that the two files as well as the trunk directory itself are marked as modified
(M). To record the result of our merge operation in the repository you should now
commit these changes.

Resolving conflicts

Finally we are going to examine how to resolve a conflict. This can happen if two
different authors edit the same file, or if you yourself have made modifications to
the same file in two different locations.

To explore the latter situation, open a second terminal window on your machine
and navigate to a different directory than the one where you originally checked out
a working copy of the repository. Now check out the same repository again. Go to
trunk and modify the first line of guacamole. instructions to read:

Mash avocados roughly - leave chunks

Commit this change. Now go back to your original terminal window and the location
of the first working copy you checked out, and change the same first line in
guacamole.instructions in trunk to read:

Mash avocados finely to a smooth paste

Now attempt to commit this. You will be told:

Transmitting file data .svn: E155011: Commit failed (details follow):
svn: E155011: File '~/uname-recipes/trunk/guacamole.instructions' is
out of date

svn: E170004: File '/trunk/guacamole.instructions' is out of date

This is because you committed changes to the same file, hence your working copy is
out of date with respect to the repository. You will have to update your working
copy before you can commit anything. When you update SVN attempts to merge the
latest version of guacamole.instructions in the repository with the version in
your working copy, leading to a conflict (marked with file status C) because the first
line differs in the two versions:

svn update

Updating '."':

C guacamole.instructions

Updated to revision 8.

Conflict discovered in file 'guacamole.instructions'.

Select: (p) postpone, (df) show diff, (e) edit file, (m) merge,
(mc) my side of conflict, (tc) their side of conflict,
(s) show all options:

SVN is asking you how to resolve this conflict. You could start by responding with s
to show more information about the options. You can show what the difference is
between your working copy of the file and the most recent version being fetched
from the repository in the update by responding with df.

You may like to explore what happens for different options. If you like the version of
the file you checked into the repository first (rough chunky avocados) you may want
to simply accept it by responding with tc, this overwrites your working copy of the
file with the checked-in version. Alternatively if you insist your working copy
version (smooth avocados) is better you can choose to keep it by responding with
mc, optionally followed by a commit that records your version in the repository. You
may choose to edit the file (e) to put in some kind of compromise choice on how to
mash the avocado, followed by a commit of that version. You can also postpone the
decision and come back to it later.

As you can see the SVN terminology (“my”, “their”) reflects the situation of multiple
authors editing the same file. In this case you should probably communicate with

10

your co-author / collaborator to come to a decision, and then implement it using the
version control system.

You are encouraged to explore these options and to use svn help to better
understand the commands used so far as well as to explore new commands. Online
documentation and guidance about using SVN can be found at http://svnbook.red-

bean.com/

11

