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Enabling distributed
kinetic Monte Carlo simulations for
catalysis and materials science
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Catalytic Materials Design -

Convection/diffusion of reactants towards
(or products from) the surface of the pellet

Diffusion through the porous
network of the catalytic pellet

Possible bulk phase reactions...

Materials modelling opportunities:
* Property prediction

* Materials discovery/engineering
e Unit (reactor) & process design

Adsorption and surface reactions
on the catalytically active phase
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The Kinetic Monte Carlo Approach =
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* |nstead of simulating dynamics, KMC* focuses on rare events
* Simulates reactions much faster than Molecular Dynamics

* |ncorporates spatial information contrary to micro-kinetic models?
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The Kinetic Monte Carlo Approach =
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KMC Algorithm Flowchart

Define simulation
(read input)

l

Initialize all data
structures &
populate lattice

!

Create a queue

t< tfinal?

Yes

No (Terminate)

Advance time to that of
the first process to occur

Time advancement
IS a random
variable!

|

Report observables

of all microscopic
processes

Preparatory operations

v

Execute Process

v

Main KMC loop

Update state and
event queue
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Typical KMC Output i
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Our Approach to Kinetic Simulation =

9

5= /acros

Advanced lattice-KMC made easy

For computational catalysis
and surface science

Captures detailed energetics

About Zacros 2= PhD Studentship
Zacroais i Kinatic Morits Carlo [KMCY sofi R ~ Opportunity!

and complex reaction mechanisms http://zacros.org

Features keyword-based syntax and troubleshooting

M. Stamatakis and D. G. Vlachos. J. Chem. Phys. 134, 214115 (2011).

AN
J. Nielsen, M. d’Avezac, J. Hetherington and M. Stamatakis. J. Chem. Phys. 139, 224706 (2013). ﬁ UCL ENGINEERING

https://xip.uclb.com/i/software/material_modelling/Zacros.html
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Why Distributed Simulations? -

Obtaining higher accuracy:

* Errors of observables in Monte Carlo drop as 1/\/Nsamples

* Larger lattices = more reactions per unit time = more samples...
Could run multiplicates... but not always!
Capturing relevant physics:

* Phenomena evolving at large
spatial scales:

v’ Catalyst reconstruction

Spirals with wavelengths of 100s of

v’ Pattern formation =
atomic diameters

S. Nettesheim, A. Vonoertzen, H. H. Rotermund and G. Ertl. J. Chem. Phys., 98, 9977-9985 (1993). o
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Efficient Distributed KMC: Non-Trivial! %

“CO COx Step 8
e co*
15 -
(@)
@@02 O* O 10 |
°e )
O—O | ©
O* COZ 0" a @ 1
@_gO oO—@ 0] 5 10 15 20 25
X

 The KMC algorithm is inherently serial, simulating history of events
that have causal relationships

 Optimised KMC algorithms need only perform local updates due to
the finite range of interactions or reactions...
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How about Domain Decomposition? 2

e Define subdomains, each v
assigned to an MPI process
5 8 | o
. : internal halo external halo
 Events at internal sites > <
are simulated “privately” ph O
and asynchronously 10/ e asde
> 1 4, 7
! o o
* Events occurring at (X))
“boundaries” (halos) g
have to be communicated via 0 3 6
messages to neighbouring
subdomain(s) |
0) 5 10 15
X
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[ ] [ ] [ ] [ ] ‘
Maintaining Causality -
.. .: [ ] (] co
* The asynchronous nature of the simulation 15| 1'::-, ,'3, ° o
can lead to violations of causality! NIRRT
1 - B
MP| 2 i ' ) A' 1 : > 0 eoeo .o:k: ° f.
Process ! o 5 10 15
(MPIP): { | ' ' N g
0 | 5 5 >
t=0 T 4 Lin

* At KMC time t, MPIP O sends a message to MPIP 1

* Too late! MPIP 1 is already at t,... Need rollback mechanism!
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Maintaining Causality -
.. .: [ ] (] co
* The asynchronous nature of the simulation 15| 1'::-, ,'3, ¢ o
can lead to violations of causality! NIRRT
2t : : A 0570 28
|V|P| 2 i ' I 3 i > 0 YY) .o:k: ° f.
Process 'M* *W i o s 1 15
(MPIP): 4 | i | N g
0 | 5 | >
| | | ! 'ﬁ: anti-messages
t=0 tO tl tfln

* MPIP 1 rolls-back to t, and sends anti-messages as necessary
(instructing MPIPs to which it had sent messages to “undo things”)
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Maintaining Causality -
.. .: [ ] (] co
* The asynchronous nature of the simulation 15| 1'::-, ,'3, ¢ o
can lead to violations of causality! NIRRT
SN — 70
MPl 2 i I i i | > 0 (X X .o:k: ° f.
Process 'M* *W: o 5 10 15
(MPIP): ; | i i > '
0 | 5 5 >
| | | ! 'ﬁ: anti-messages
t=0 T b4 Lin

* MPIP 2 now has to roll-back too, and send an anti-message to MPIP 3...

* When does the roll-back cascade stop? How to keep track of rollbacks?
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The Time-Warp Algorithm -

* Proposed by Jefferson in ’85 in his paper “Virtual Time”?!

* Underlying Principle: if event A causes event B, then t <t

real,A real,B

* Elegant algorithm to systematically deal with arbitrarily large cascades
of rollbacks with local operations:

e Taking snapshots \

e Restoring the state of the

simulation at an earlier time
> ... in addition to the

* Sending and receiving messages usual KMC operations

or anti-messages

* Executing messaged actions j

B UCL ENGINEERING
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Time-Warp: Conceptual Implementation &

Main KMC loop

(Terminate

Comms/Rollback loop

Messages
pending?

Roll-back to last snapshot

with tsnap < tmessg
Receive message l
Roll-back message queue
, Yes and send anti-messages
tmessg <t:
No
Execute next process Send messages if Take
. P —> executing a process ——>
(internal or messaged) . . . snapshot
involving halo sites
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Validating the Implementation &

* Recall the underlying principle of Time-Warp algorithm:

v’ if event A causes event B, thent, <t

real A real,B

* Enables construction of a serial algorithm that emulates the MPI run

 Decompose the domain for n MPIPs,

.. .: o [ J CO* )
15 1.::.. 3. * o as in the actual MPI run
M| secccsccsisassessss | * Initialise n random sequences
> : ° . :. *e .:“ (identical to those used in the MPI run)
: .O °Tl.s 2:°  Simulate most imminent event serially
0f eee _ee o o o | e Use the appropriate random sequence
0 5 10 15 when updating KMC state
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[ ] [ ) [ ) [ ] ‘
Setup of Validation Simulations -
(D‘CO CO* Conf. 1001 | Step 3292 | t = 10.00 sec | T=500.00K | E=-3.44 eV
CO reversible 5 ' @ © © @ e | CO*
O adsorption O*
41+ ®@ @@ © 0 o o
02 O* O*
% CO reversible 310 & & o6 o o
. >
O—:0O adsorption 'e © ol ®© © o
o* COX 1 ® & & e O
CO-O reversible
o—@ oxidation Of . ® . ® ®
0 2 4
+ O* and CO* diffusions X

* CO oxidation simulations with 2 species, 10 elementary events
and 2 energetic clusters, on a 6 x 6 lattice with 4 MPI processes
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[ ] [ ] m
Validation Results
Time-Warp parallel (MPI) run . Time-Warp emulation in serial run
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e Comparison of Time-Warp MPI and parallel-emulation runs:
v" identical results, down to the stochastic fluctuations!

* Also true for larger lattices and MPI process configurations
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[ ] [ ] m
Validation Results
Time-Warp parallel (MPI) run Is Time-Warp emulation in serial run
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e Comparison of Time-Warp MPI and parallel-emulation runs:
v" identical results, down to the stochastic fluctuations!

* Also true for larger lattices and MPI process configurations
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Performance Benchmarks -
104; IR e Used system with reversible
: +;gg§;gg \;//"‘ CO adsorption and diffusion
: 432432
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 Time-Warp becomes progressively more efficient for larger lattices
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Performance Benchmarks
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20

Used system with reversible
CO adsorption and diffusion

KMC simulation speed
{KMC time advancement}

{required clock time}

Normalisation with respect
to 1 MPI process run

 Overheads of Time-Warp algorithm become negligible for larger lattices
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Conclusions m

Kinetic Monte Carlo simulations:

 powerful approach towards understanding heterogeneous catalysts

Large-scale simulations needed:
* Higher accuracy predictions

* New physics: reconstruction, pattern formation on catalytic surfaces

KMC code . °°= Zacros now implements Time Warp algorithm:

- ced lattice-KMC made easy

* First-of-its kind prototype for massively parallel simulations (MPI)

* Exact algorithm yielding reproducible and validated output
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