
Lecture 5: Synchronisation

Shared Memory
Programming with OpenMP

Why is it required?
Recall:

• Need to synchronise actions on shared variables.

• Need to ensure correct ordering of reads and writes.

• Need to protect updates to shared variables (not atomic by default)

3

BARRIER directive
• No thread can proceed past a barrier until all the other threads have

arrived.
• Note that there is an implicit barrier at the end of DO/FOR,

SECTIONS and SINGLE directives.

• Syntax:
Fortran: !$OMP BARRIER
C/C++: #pragma omp barrier

• Either all threads or none must encounter the barrier: otherwise
DEADLOCK!!

4

BARRIER directive (cont)
Example:
!$OMP PARALLEL PRIVATE(I,MYID,NEIGHB)

myid = omp_get_thread_num()
neighb = myid - 1
if (myid.eq.0) neighb = omp_get_num_threads()-1
...
a(myid) = a(myid)*3.5

!$OMP BARRIER
b(myid) = a(neighb) + c
...

!$OMP END PARALLEL

• Barrier required to force synchronisation on a

5

Critical sections

• A critical section is a block of code which can be executed by only
one thread at a time.

• Can be used to protect updates to shared variables.

6

CRITICAL directive
• Syntax:
Fortran: !$OMP CRITICAL

block
!$OMP END CRITICAL

C/C++: #pragma omp critical
structured block

7

CRITICAL directive (cont)
Example: pushing and popping a task stack

!$OMP PARALLEL SHARED(STACK),PRIVATE(INEXT,INEW)
...

!$OMP CRITICAL
inext = getnext(stack)

!$OMP END CRITICAL
call work(inext,inew)

!$OMP CRITICAL
if (inew .gt. 0) call putnew(inew,stack)

!$OMP END CRITICAL
...

!$OMP END PARALLEL

8

ATOMIC directive
• Used to protect a single update to a shared variable.
• Applies only to a single statement.
• Syntax:
Fortran: !$OMP ATOMIC

statement

where statement must have one of these forms:
x = x op expr, x = expr op x, x = intr (x, expr) or
x = intr(expr, x)
op is one of +, *, -, /, .and., .or., .eqv., or .neqv.
intr is one of MAX, MIN, IAND, IOR or IEOR

9

ATOMIC directive (cont)
C/C++: #pragma omp atomic

statement
where statement must have one of the forms:
x binop = expr, x++, ++x, x--, or --x
and binop is one of +, *, -, /, &, ^, <<, or >>

• Note that the evaluation of expr is not atomic.
• May be more efficient than using CRITICAL directives, e.g. if

different array elements can be protected separately.
• No interaction with CRITICAL directives

10

ATOMIC directive (cont)
Example (compute degree of each vertex in a graph):

#pragma omp parallel for
for (j=0; j<nedges; j++){

#pragma omp atomic
degree[edge[j].vertex1]++;

#pragma omp atomic
degree[edge[j].vertex2]++;

}

11

Lock routines
• Occasionally we may require more flexibility than is provided by

CRITICAL directive.
• A lock is a special variable that may be set by a thread. No other

thread may set the lock until the thread which set the lock has unset
it.

• Setting a lock can either be blocking or non-blocking.
• A lock must be initialised before it is used, and may be destroyed

when it is not longer required.
• Lock variables should not be used for any other purpose.

12

Lock routines - syntax
Fortran:
USE OMP_LIB

SUBROUTINE OMP_INIT_LOCK(OMP_LOCK_KIND var)

SUBROUTINE OMP_SET_LOCK(OMP_LOCK_KIND var)
LOGICAL FUNCTION OMP_TEST_LOCK(OMP_LOCK_KIND var)

SUBROUTINE OMP_UNSET_LOCK(OMP_LOCK_KIND var)
SUBROUTINE OMP_DESTROY_LOCK(OMP_LOCK_KIND var)

var should be an INTEGER of the same size as addresses (e.g. INTEGER*8
on a 64-bit machine)

OMP_LIB defines OMP_LOCK_KIND

13

Lock routines - syntax
C/C++:
#include <omp.h>
void omp_init_lock(omp_lock_t *lock);
void omp_set_lock(omp_lock_t *lock);
int omp_test_lock(omp_lock_t *lock);
void omp_unset_lock(omp_lock_t *lock);
void omp_destroy_lock(omp_lock_t *lock);

14

Lock example
Example (compute degree of each vertex in a graph):

for (i=0; i<nvertexes; i++){
omp_init_lock(lockvar[i]);

}

#pragma omp parallel for
for (j=0; j<nedges; j++){

omp_set_lock(lockvar[edge[j].vertex1]);
degree[edge[j].vertex1]++;
omp_unset_lock(lockvar[edge[j].vertex1]);
omp_set_lock(lockvar[edge[j].vertex2]);
degree[edge[j].vertex2]++;
omp_unset_lock(lockvar[edge[j].vertex2]);

}

15

Exercise: Molecular dynamics
• The code supplied is a simple molecular dynamics simulation of the

melting of solid argon.
• Computation is dominated by the calculation of force pairs in subroutine
forces.

• Parallelise this routine using a DO/FOR directive and critical sections.
- Watch out for PRIVATE and REDUCTION variables.
- Choose a suitable loop schedule

• Extra exercise: can you improve the performance by using locks, or
atomics, or by using a reduction array.

16

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the
material under the following terms: You must give appropriate credit, provide a link to the
license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their permission
before reusing these images.

17

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

