
Lecture 2: OpenMP fundamentals

Shared Memory 
Programming with OpenMP 



Overview

• Basic Concepts in OpenMP

• History of OpenMP

• Compiling and running OpenMP programs

3



What is OpenMP? 
• OpenMP is an API designed for programming shared memory 

parallel computers.

• OpenMP uses the concepts of threads and tasks

• OpenMP is a set of extensions to Fortran, C and C++

• The extensions consist of:
- Compiler directives
- Runtime library routines
- Environment variables

4



Directives and sentinels
• A directive is a special line of source code with meaning only 

to certain compilers. 

• A directive is distinguished by a sentinel at the start of the line.

• OpenMP sentinels are:

-Fortran: !$OMP
-C/C++: #pragma omp

• This means that OpenMP directives are ignored if the code is 
compiled as regular sequential Fortran/C/C++. 

5



Parallel region
• The parallel region is the basic parallel construct in 

OpenMP. 
• A parallel region defines a section of a program.
• Program begins execution on a single thread (the master 

thread).
• When the first parallel region is encountered, the master 

thread creates a team of threads (fork/join model).
• Every thread executes the statements which are inside 

the parallel region
• At the end of the parallel region, the master thread waits 

for the other threads to finish, and continues executing 
the next statements

6



Parallel region

Sequential part

Sequential part

Sequential part

Parallel region

Parallel region

7

int main(){
.
.
#pragma omp parallel    
{
.
.
.
.
.
.
.
}
.
.
.
.
#pragma omp parallel    
{
.
.
.
}
.
.
.



Shared and private data
• Inside a parallel region, variables can either be shared or 
private.

• All threads see the same copy of shared variables. 

• All threads can read or write shared variables.

• Each thread has its own copy of private variables: these 
are invisible to other threads.

• A private variable can only be read or written by its own 
thread.

8



Parallel loops
• In a parallel region, all threads execute the same code

• OpenMP also has directives which indicate that work should be divided up 
between threads, not replicated.
- this is called worksharing

• Since loops are the main source of parallelism in many applications, 
OpenMP has extensive support for parallelising loops.

• The are a number of options to control which loop iterations are executed 
by which threads.

• It is up to the programmer to ensure that the iterations of a parallel loop 
are independent. 

• Only loops where the iteration count can be computed before the 
execution of the loop begins can be parallelised in this way. 

9



Synchronisation
• The main synchronisation concepts used in OpenMP are: 
• Barrier
- all threads must arrive at a barrier before any thread can proceed past it
- e.g. delimiting phases of computation

• Critical region
- a section of code which only one thread at a time can enter
- e.g. modification of shared variables

• Atomic update
- an update to a variable which can be performed only by one thread at a 

time
- e.g. modification of shared variables (special case)

10



Brief history of OpenMP 
• Historical lack of standardisation in shared memory directives. 
- each hardware vendor provided a different API
- mainly directive based
- almost all for Fortran
- hard to write portable code

• OpenMP forum set up by Digital, IBM, Intel, KAI and SGI. Now includes 
most major vendors (and some academic organisations, including 
EPCC).

• OpenMP Fortran standard released October 1997, minor revision (1.1) 
in November 1999. Major revision (2.0) in November 2000.

• OpenMP C/C++ standard released October 1998. Major revision (2.0) in 
March 2002.

11



History (cont.)
• Combined OpenMP Fortran/C/C++ standard (2.5) released in May 2005.
- no new features, but extensive rewriting and clarification

• Version 3.0 released in May 2008
- new features, including tasks, better support for loop parallelism and 

nested parallelism
• Version 3.1 released in June 2011
- corrections and some minor new features
-most current compilers support this

• Version 4.0 released in July 2013
- accelerator offloading, thread affinity, more task support,...
- now in most implementations (except offloading)

• Version 4.5 released November 2015
- corrections and a few new features
- some full implementations

12



OpenMP resources

• Web site:

www.openmp.org
-Official web site: language specifications, links to compilers and tools, 

mailing lists

• Books:

- �Using OpenMP: Portable Shared Memory Parallel Programming�,
Chapman, Jost and Van der Pas, MIT Press, ISBN: 0262533022 

• covers up to Version 2.5

- “Using OpenMP—The Next Step”, 

Van der Pas, Stotzer and Terboven, MIT Press, 

ISBN: 9780262534789

• covers Affinity, Accelerators, Tasking, and SIMD

13



Compiling and running OpenMP programs
• OpenMP is built-in to most of the compilers you are likely to use. 
• To compile an OpenMP program you need to add a (compiler-specific) flag 

to your compile and link commands. 
- -fopenmp for gcc/gfortran
- -openmp for Intel compilers
- on by default in Cray compilers

• The number of threads which will be used is determined at runtime by the 
OMP_NUM_THREADS environment variable
- set this before you run the program 
- e.g. export OMP_NUM_THREADS=4

• Run in the same way you would a sequential program 
- type the name of the executable

14



Exercise
Hello World

• Aim: to compile and run a trivial program.

• Vary the number of threads using the OMP_NUM_THREADS 
environment variable. 

• Run the code several times - is the output always the same? 

15



Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the 
material under the following terms: You must give appropriate credit, provide a link to the 
license and indicate if changes were made. If you adapt or build on the material you must 

distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their permission 
before reusing these images.

16

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

