
 1

Persistent Memory Exercises

Adrian Jackson

1 Introduction

In this exercise we are going to log on to the system and run a simple program to ensure you can access the

system and you know what the system setup is like. We provide a pre-compiled application for you to run, but

you will get the chance to implement the source code for this application in the next practical.

2 Using the system

For this tutorial we will be using the NEXTGenIO prototype system. You should have an account on this system

already. To access the system you need to ssh to a gateway node (replacing XX in the ngguestXX string below

with the number of the actual account you have been given):

ssh ngguestXX@hydra-vpn.epcc.ed.ac.uk

Once on this gateway node you need to ssh in to the NEXTGenIO system itself (if you want to open any windows,

i.e. emacs, you’ll need to add a –Y or –X flag to the command below):

ssh nextgenio-login2

From here you can compile and submit jobs. We use the modules environment for controlling software such as

compilers and libraries. You can see what software has been installed on the system using the following

command

module avail

The system is configured with a login node separate from the compute nodes in the system. We use the Slurm

batch system to access and enquire about the compute nodes. You can discover how many compute nodes there

are, and what memory they have installed, using the following command:

sinfo

Or:

sinfo -N -l

Below is an example of a Slurm batch script we can use to run a job:

#!/bin/bash

#SBATCH --nodes=1

#SBATCH --time=01:00:00

#SBATCH --job-name=test_job

#SBATCH --nvram-option=1LM:1000

#SBATCH --cpus-per-task=1

mpirun -n 48 -ppn 48 test_job

 2

The line #SBATCH --nvram-option=1LM:1000 specifies the setup of the B-APM required by the job. For

this system this option is required otherwise your job will not run. The first part of the text after --nvram-

option= specifies the platform mode required for the job, 1LM specifies AppDirect mode and 2LM specifies

MemoryMode. The number after the platform mode (i.e. :1000) specifies how much B-APM memory is

required for the specified platform mode (in this case the script is specifying AppDirect with 1TB of B-APM

memory).

To run a job on the system we use the sbatch command, i.e. (assuming the script above is called runtestjob.sh)

Sbatch runtestjob.sh

You can squeue to see running jobs (squeue –u $USER will show only your jobs) and scancel to cancel

a job.

The mpirun command in the script above is the MPI job launcher which runs the executable on the selected

number of nodes. The default MPI library being used is the Intel MPI library (although you can use the OpenMPI

library as well by swapping out the requisite modules). For the Intel MPI library there are a number of arguments

we are passing, i.e.:

mpirun -n 48 -ppn 48 test_job

Here –n 48 specifies the number of processes (or copies of you executable) to run. –ppn 48 specifies how

many processes to run on each node requested. The exercises we are doing in this practical will have submission

scripts with mpirun already specified in them

We are using the Intel compiler setup on this machine. This means the C compiler is called icc or mpicc and

the Fortran compiler is called ifort or mpif90.

On the NEXTGenIO prototype system we have a Lustre filesystem where your home directory is installed, at:

/home/nx04/nx04/$USER

On the compute nodes there are two further filesystems:

/mnt/pmem_fsdax0

/mnt/pmem_fsdax1

These correspond to the B-APM installed with the first processor in the node (pmem_fsdax0) and the second

processor in the node (pmem_fsdax1). Accessing the B-APM attached to the processor your application is

running on is faster than accessing the B-APM attached to the other processor in the node.

3 Running a basic program

To get started on the system copy the following software into your home directory:

/home/nx01/shared/pmtutorial/exercises/streams.tar.gz

/home/nx01/shared/pmtutorial/exercises/IOR.tar.gz

You should be able unpack both with the commands:

 3

tar xf streams.tar.gz

tar xf IOR.tar.gz.

For IOR you need to go into the IOR directory and type:

make mpiio

Then you can run a Lustre IOR benchmark using:

sbatch lustre_ior.sh

And you can run a fsdax IOR benchmark using:

sbatch fsdax_ior.sh

For the streams benchmark you need to go into the streams directory and type:

make

Then you can run it using:

sbatch run_streams.sh

4 NUMA-aware I/O

We should now have been able to run IOR using Lustre and also the filesystems mounted on the compute nodes

(i.e. /mnt/pmem_fsdax0/), and streams using DRAM. For this practical the exercise is to modify the IOR source

code so that is can exploit both the filesystems on the compute node (i.e. /mnt/pmem_fsdax0 and

/mnt/pmem_fsdax1), and ensure that processes running on socket 0 use pmem_fsdax0 and those running on

socket 1 use pmem_fsdax1.

To compute which socket a process is running on you can use this code:

unsigned long GetProcessorAndCore(int *chip, int *core){

 unsigned long a,d,c;

 __asm__ volatile("rdtscp" : "=a" (a), "=d" (d), "=c" (c));

 *chip = (c & 0xFFF000)>>12;

 *core = c & 0xFFF;

 return ((unsigned long)a) | (((unsigned long)d) << 32);;

 4

}

You can then use that, with some string manipulation, to create the string /mnt/pmem_fsdax0 or

/mnt/pmem_fsdax1. This code will need to be added into the file IOR.c, in the function

GetTestFileName. Alter this to create the filename based on the socket number.

5 Volatile Non-Volatile Streams

For this practical the goal is to change the streams source code to utilise libmemkind to create the memory

allocations that streams use for calculations. To exploit libmemkind you will need to use the following functions

and header files:

#include <memkind.h>

memkind_create_pmem

memkind_malloc

You will also need to load the memkind module (module load memkind) and add this to your batch script

to compile and run your modified application.

6 Persistent Streams

For this practical the goal is to change the streams source code to utilise PMDK to create the memory allocations

that streams uses for its calculations. To exploit PMDK you will need to use the following functions and header

files:

#include <libpmem.h>

pmem_map_file

pmem_persist

pmem_unmap

You will also need to load the PMDK module (module load pmdk) and add this to your batch script to

compile and run your modified application.

There are different choices that can be made on when and where to persist data within the streams kernels, and

which parts of the streams data to place in volatile and non-volatile memory. Try different persistent

combinations and memory allocation locations to investigate impact on performance.

7 Correct Persisting

To investigate correct persistence in applications create two application, one that writes data to persistent

memory using PMDK and the other that reads the data. Ensure you persist memory at the end of the writing

application and run your two applications so one consumes the data from the other and checks it is correct.

Once you have done that correctness check, remove the persistence in the write application, compile, and re-

run your workflow (the two applications together). Can the reader now correctly obtain the data is it expecting?

