
General I/O and
Persistent Memory

Hardware

Adrian Jackson
a.jackson@epcc.ed.ac.uk
@adrianjhpc

mailto:a.jackson@epcc.ed.ac.uk

I/O

• I/O essential for all applications/codes
• Some data must be read in or produced

• Instructions and Data

• Basic hierarchy
• CPU – Cache – Memory – Devices (including I/O)

• Often “forgotten” for HPC systems
• Linpack not I/O bound

• Not based on CPU clock speed or memory size

• Often “forgotten” in program
• Start and end so un-important

• Just assumed overhead

Using non-volatile memory

I/O

• Small parallel programs (i.e. under 1000 processors)

• Cope with I/O overhead

• Large parallel programs (i.e. tens of thousand processors)

• Can completely dominate performance

• Exacerbate by poor functionality/performance of I/O systems

• Any opportunity for program optimisation important

• Improve performance without changing program

Using non-volatile memory

Challenges of I/O

• Moves beyond process-memory model
• data in memory has to physically appear on an external device

• Files are very restrictive
• Don’t often map well to common program data structures (i.e. flat file/array)

• Often no description of data in file

• I/O libraries or options system specific
• Hardware different on different systems

• Lots of different formats
• text, binary, big/little endian, Fortran unformatted, ...

• Different performance and usability characteristics

• Disk systems are very complicated
• RAID disks, caching on disk, in memory, I/O nodes, network, etc…

Using non-volatile memory

Performance

Interface Throughput Bandwith (MB/s)

PATA (IDE) 133

SATA 600

Serial Attached SCSI (SAS) 600

Fibre Channel 2,000

NVMe 2,000

Using non-volatile memory

High Performance or Parallel I/O

• Lots of different methods for providing high performance
I/O

• Hard to support multiple processes writing to same file
• Basic O/S does not support

• Data cached in units of disk blocks (eg 4K) and is not coherent

• Not even sufficient to have processes writing to distinct parts of
file

• Even reading can be difficult
• 1024 processes opening a file can overload the filesystem limit

on file handles etc….

• Data is distributed across different processes
• Dependent on number of processors used, etc…

• Parallel file systems may allow multiple access
• but complicated and difficult for the user to manage

Using non-volatile memory

Hierarchy
Disk

Disk
Disk

Disk
Disk

Disk

Adapter

I/O Compute Node

I/O Software/System

Disk
Disk

Disk

Disk
Disk

Disk

Adapter

I/O Compute Node

I/O Software/System

Network

Compute

Node

Compute

Node

Compute

Node

I/O System

Compute

Using non-volatile memory

Non-volatile memory

• Non-volatile memory stores data after power off
• SSDs (NAND Flash) are common examples

• Similar technology in memory cards for your phones, cameras, etc…

• These store data persistently but are generally slow and less
durable than volatile memory technologies (i.e. DDR memory)

Using non-volatile memory

JEDEC NVDIMM standards

• NVDIMM-F
• Traditional flash solution with controller on board

• NAND flash performance and size

• NVDIMM-N
• DRAM with Flash for backup

• Separate power supply (i.e. super capacitors) allow data to be copied to flash
on power failure

• Limited by DRAM size and capacitor sizes

• DRAM performance and size

• NVDIMM-P
• Channel support for mixed memory types

• Protocol to enable transactional access

• Different access latencies allowed between media types

• Intel Optane DCPMM, technically, does not implement the NVDIMM-P standard,
but it is conceptually NVDIMM-P

Using non-volatile memory

Intel Optane DCPMM

Using non-volatile memory

Intel Optane DCPMM

• Non-volatile RAM
• Optane memory

• Much larger capacity than DRAM
• Hosted in the DRAM slots, controlled by a standard memory controller

• Slower than DRAM by a small factor, but significantly faster
than SSDs

• Read/write asymmetry and other interesting performance
factors

• High endurance (5 year warranty)

Using non-volatile memory

Intel Optane DC PMM

• Requires specific processors to support the hardware
• PM-enabled memory controller required

• Deal with different latency memory bus traffic

• Has different modes of operation

• 1LM – App Direct
• Both memories are visible to the program

• Using the PM requires program changes

• 2LM – Memory Mode
• DRAM used as Last Level Cache (LLC) for PM

• Transparent exploitation but no persistence

Using non-volatile memory

Optane DCPMM

• Cache coherent data accesses
• Byte addressable (cache line)

• Requires reboot before switching platform mow
• Memory mode (2LM)

• App direct (1LM)
• fsdax

• Filesystem block device for creating namespace

• devdax

• Character device, no namespace

• Performance identical once file is created

• Can partition system to have both memory and app direct spaces

Using non-volatile memory

Memory mode

Using non-volatile memory

Optane DCPMM

• Socket based systems means NUMA when not a single socket
system

• Performance dependent on using local memory

• Factor ~4x write performance for using local memory when fully
populating nodes

• Factor ~2x read performance for using local memory when fully
populating nodes

Using non-volatile memory

NUMA programming

• Intel specific:
unsigned long GetProcessorAndCore(int *chip, int *core){

unsigned long a,d,c;

__asm__ volatile("rdtscp" : "=a" (a), "=d" (d), "=c" (c));

*chip = (c & 0xFFF000)>>12;

*core = c & 0xFFF;

return ((unsigned long)a) | (((unsigned long)d) << 32);;

}

• Arm specific:
unsigned long GetProcessorAndCore(int *chip, int *core){

return syscall(SYS_getcpu, core, chip, NULL);

}

Using non-volatile memory

Overall performance

Using non-volatile memory

NUMA performance

Using non-volatile memory

Performance asymmetry

• Read is ~3x slower than DRAM

• Write is ~7x slower than DRAM

• Read is 4x-5x faster than write for Optane

• Write queue issues can mean variable performance
• Optane has active write management

• On-DIMM controller

• Accesses are coalesced into blocks of i.e. 256 bytes

Using non-volatile memory

Performance details

Using non-volatile memory

Volatile Memory

• Two principal volatile memory technologies: SRAM and DRAM.

• DRAM (dynamic random access memory) is used for main
memory of almost all current machines.

• SRAM (static random access memory) predominantly used for
caches.

• DRAM uses a single transistor for each bit.
• reading the bit can cause it to decay

• needs to be refreshed periodically

• SRAM uses 4-6 transistors per bit
• no need to refresh

Using non-volatile memory

Wide memory path

• Instead of the connection from cache to memory being one
word wide (32 or 64 bit), it can be many words wide (typically 32
or 64 bytes).

• Allows, for example, a level 3 cache line to be loaded all at
once.

• Memory is normally organised in banks

• Different banks can service read or write requests concurrently.

• Addresses are striped across banks to minimise the possibility
that two consecutive accesses go to the same bank.

Using non-volatile memory

Bank 0 Bank 1 Bank 2 Bank 3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Virtual memory
• Allows memory and disk to be seamless whole

• processes can use more data that will fit into physical memory

• Allows multiple processes to share physical memory

• Can think of main memory as a cache of what is on disk
• blocks are called pages (4 to 64 kbytes)
• a miss is called a page fault

• CPU issues virtual addresses which are translated to physical addresses.

• Pages can be placed anywhere in memory
• like a fully associative cache
• approximate LRU replacement strategy
• write back, not write through

• Mapping from virtual to physical address is stored in a page table in
memory

• Page table lookup is relatively expensive

• Page faults are very expensive
• requires system call (~1ms)

Using non-volatile memory

Summary

• Optane hardware is complicated

• Performance is workload dependent (when isn’t it?)

• Targeted usage will be required for the best performance

• I/O has been problematic for a while anyway

Using non-volatile memory

Pricing

128 GB 256 GB 512 GB

Intel guide price $577 $2125 $6751

Shop1 $892 $2850

Shop2 $695 $2,595 $8,250

Shop3 £755

DRAM ~$4500 N/A N/A

Using non-volatile memory

• Don’t trust these numbers

• Info from tomshardware.co.uk (old)

Pricing

• List prices

Using non-volatile memory

Size (GB) Cost (€) €/GB

128 2223 17.36

256 7638 29.83

512 23199 45.31

Size (GB) Cost (€) €/GB

8 347 43.37

16 444 27.78

32 855 26.71

64 2063 32.23

128 4959 38.74

DRAMOptane DPCMM

Practical

• Take IOR and STREAMS source code

• Run on the prototype

• Prototype is available at:

ssh hydra-vpn.epcc.ed.ac.uk

• Then

ssh nextgenio-login2

• Using your guest account

• Practical source code is available at:

/home/nx01/shared/pmtutorial/exercises

• Using slurm as the batch system
sbatch scriptname.sh

Using non-volatile memory

ssh ngguest01@hydra-vpn.epcc.ed.ac.uk

ssh nextgenio-login2

/home/nx01/shared/pmtutorial

https://github.com/NGIOproject/PMTutorial/

blob/master/Exercises/exercisesheet.pdf

sbatch scriptname.sh

Using non-volatile memory

mailto:ngguest01@hydra-vpn.epcc.ed.ac.uk
https://github.com/NGIOproject/PMTutorial/blob/master/Exercises/exercisesheet.pdf

