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Overview

Can divide overheads up into four main categories:

• Lack of parallelism

• Load imbalance

• Synchronisation

• Communication
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Lack of parallelism

• Tasks may be idle because only a subset of tasks are 

computing

• Could be one task only working, or several.

- work done on task 0 only

- with split communicators, work done only on task 0 of each 

communicator

• Usually, the only cure is to redesign the algorithm to exploit 

more parallelism. 

5



Extreme scalability
• Note that sequential sections of a program which scale as 

O(p) or worse can severely limit the scaling of codes to very 

large numbers of processors. 

• Let us assume a code is perfectly parallel except for a small 

part which scales as O(p)

- e.g. a naïve global sum as implemented for the MPP pi example!

• Time taken for parallel code can be written as

where Ts is the time for the sequential code and a is the 

fraction of the sequential time in the part which is O(p).

6

T
p

=T
s

1- a( )
p

+ap

æ

è

ç
ç

ö

ø

÷
÷



• Compare with Amdahl’s Law

For example, take a = 0.0001

For 1000 processors, Amdahl’s Law gives a speedup of ~900

For an O(p) term, the maximum speedup is ~50 (at p =100).

• Note: this assumes strong scaling,  but even for weak scaling 

this will become a problem for 10,000+ processors
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WolframAlpha
• O(1) term in scaling with a=0.0001 assuming strong-scaling (Amdahl's law):

- http://www.wolframalpha.com/input/?i=maximum+1%2F%28%281-

0.0001%29%2Fp%2B0.0001%29+with+p+from+1+to+100000

• O(p) term in scaling with a=0.0001 assuming strong-scaling:
- http://www.wolframalpha.com/input/?i=maximum+1%2F%28%281-

0.0001%29%2Fp%2B0.0001+*+p%29+with+p+from+1+to+1000

• O(p) term in scaling with a=0.0001 assuming weak-scaling:
- http://www.wolframalpha.com/input/?i=maximum+1%2F%28%281-

0.0001%29%2B0.0001+*+p%29+with+p+from+1+to+10000

• O(log2(p)) term in scaling with a=0.0001 assuming strong-scaling:
- http://www.wolframalpha.com/input/?i=maximum+1%2F%28%281-

0.0001%29%2Fp%2B0.0001+*+log2%28p%2B1%29%29+with+p+from+1+to+100000

• O(log2(p)) term in scaling with a=0.0001 assuming weak-scaling:
- http://www.wolframalpha.com/input/?i=maximum+1%2F%28%281-

0.0001%29%2B0.0001+*+log2%28p%2B1%29%29+with+p+from+1+to+100000

• O(log2(p)/p) term in scaling with a=0.0001 assuming strong-scaling:
- http://www.wolframalpha.com/input/?i=maximum+1%2F%28%281-

0.0001%29%2Fp%2B0.0001+*+log2%28p%2B1%29%2Fp%29+with+p+from+1+to+100000
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Load imbalance
• All tasks have some work to do, but some more than others....

• In general a much harder problem to solve than in shared 

variables model

- need to move data explicitly to where tasks will execute

• May require significant algorithmic changes to get right

• Again scaling to large processor counts may be hard

- the load balancing algorithms may themselves scale as O(p) or worse.

• We will look at some techniques in more detail later in the 

module
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• MPI profiling tools report the amount of time spent in each 

MPI routine

• For blocking routines (e.g. Recv, Wait, collectives) this time 

may be a result of load imbalance. 

• The task is blocked waiting for another task to enter the 

corresponding MPI call

- the other tasks may be late because it has more work to do

• Tracing tools often show up load imbalance very clearly

- but may be impractical for large codes, large task counts, long runtimes 
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Synchronisation
• In MPI most synchronisation is coupled to communication

- Blocking sends/receives

- Waits for non-blocking sends/receives

- Collective comms are (mostly) synchronising

• MPI_Barrier is almost never required for correctness

- can be useful for timing

- can be useful to prevent buffer overflows if one task is sending a lot of 
messages and the receiving task(s) cannot keep up.

- think carefully why you are using it! 

• Use of blocking point-to-point comms can result in 

unnecessary synchronisation.

- Can amplify “random noise” effects (e.g. OS interrupts)

- see later
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Communication
• Point-to-point communications

• Collective communications

• Task mapping
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Small messages
• Point to point communications typically incur a start-up cost

- sending a 0 byte message takes a finite time

• Time taken for a message to transit can often be well modeled 

as

where Tl is start-up cost or latency, Nb is the number of bytes 

sent and Tb is the time per byte. In terms of bandwidth B:

• Faster to send one large message vs many small ones

- e.g. one allreduce of two doubles vs two allreduces of one double

- derived data-types can be used to send messages with a mix of types
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Communication patterns
• Can be helpful, especially when using trace analysis tools, to 

think about communication patterns

- Note: nothing to do with OO design!

• We can identify a number of patterns which can be the cause 

of poor performance.

• Can be identified by eye, or potentially discovered 

automatically

- e.g. the SCALASCA tool highlights common issues  
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Late Sender

• If blocking receive is posted before matching send, then the 

receiving task must wait until the data is sent.

Send

Recv
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Out-of-order receives

• Late senders may be the result of having blocking receives in 

the wrong order.

Send

Recv Recv

Send

Send

Recv Recv

Send
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Late Receiver

• If send is synchronous, data cannot be sent until receive is 

posted

- either explicitly programmed, or chosen by the implementation because 

message is large

- sending task is delayed

Send

Recv
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Late Progress

• Non-blocking send returns, but implementation has not yet 

sent the data.

- A copy has been made in an internal buffer

• Send is delayed until the MPI library is re-entered by the 

sender.

- receiving task waits until this occurs

Isend

Recv

Recv
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Non-blocking comms
• Both late senders and late receivers may be avoidable by 

more careful ordering of computation and communication

• However, these patterns can also occur because of “random 

noise” effects in the system (e.g. network congestion, OS 

interrupts)

- not all tasks take the same time to do the same computation

- not all messages of the same length take the same time to arrive

• Can be beneficial to avoid blocking by using all non-blocking 

comms entirely (Isend, Irecv, WaitAll)

- post all the Irecv’s as early as possible

19



Halo swapping

loop many times:

irecv up; irecv down

isend up; isend down

update the middle of the array

wait for all 4 communications

do all calculations involving halos

end loop

• Receives not necessarily ready in advance

– remember your recv’s match someone else’s sends!
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Collective communications

• Can identify similar patterns for collective comms...
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Late Broadcaster

• If broadcast root is late, all other tasks have to wait

• Also applies to Scatter, Scatterv

Bcast

Bcast

Bcast
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Early Reduce

• If root task of Reduce is early, it has to wait for all other tasks 

to enter reduce

• Also applies to Gather, GatherV

Reduce

Reduce

Reduce
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Wait at NxN

• Other collectives require all tasks to arrive before any can 

leave.

- all tasks wait for last one

• Applies to Allreduce, Reduce_Scatter, Allgather, Allgatherv, 

Alltoall, Alltoallv

Alltoall

Alltoall

Alltoall
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Collectives
• Collective comms are (hopefully) well optimised for the 

architecture

- Rarely useful to implement them your self using point-to-point

• However, they are expensive and force synchronisation of 

tasks

- helpful to reduce their use as far as possible

- e.g. in many iterative methods, a reduce operation is often needed to 

check for convergence

- may be beneficial to reduce the frequency of doing this, compared to the 

sequential algorithm

• Non-blocking collectives added in MPI-3

- may not be that useful in practice … 
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Summary
Can divide overheads up into four main categories:

• Lack of parallelism

- Cannot split work up into enough pieces

• Load imbalance

- Pieces for each processor are not identical amount of work

• Synchronisation

- Processors waiting for each other

• Communication

- Inefficient patterns of communication
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