
MPI Optimisation
Advanced Parallel Programming

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

https://creativecommons.org/licenses/by-nc-sa/4.0/

This means you are free to copy and redistribute the material and adapt and build on the
material under the following terms: You must give appropriate credit, provide a link to the
license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Acknowledge EPCC as follows: “© EPCC, The University of Edinburgh, www.epcc.ed.ac.uk”

Note that this presentation contains images owned by others. Please seek their permission
before reusing these images.

3

https://creativecommons.org/licenses/by-nc-sa/4.0/

Overview

Can divide overheads up into four main categories:

• Lack of parallelism

• Load imbalance

• Synchronisation

• Communication

4

Lack of parallelism

• Tasks may be idle because only a subset of tasks are

computing

• Could be one task only working, or several.

- work done on task 0 only

- with split communicators, work done only on task 0 of each

communicator

• Usually, the only cure is to redesign the algorithm to exploit

more parallelism.

5

Extreme scalability
• Note that sequential sections of a program which scale as

O(p) or worse can severely limit the scaling of codes to very

large numbers of processors.

• Let us assume a code is perfectly parallel except for a small

part which scales as O(p)

- e.g. a naïve global sum as implemented for the MPP pi example!

• Time taken for parallel code can be written as

where Ts is the time for the sequential code and a is the

fraction of the sequential time in the part which is O(p).

6

T
p

=T
s

1- a()
p

+ap

æ

è

ç
ç

ö

ø

÷
÷

• Compare with Amdahl’s Law

For example, take a = 0.0001

For 1000 processors, Amdahl’s Law gives a speedup of ~900

For an O(p) term, the maximum speedup is ~50 (at p =100).

• Note: this assumes strong scaling, but even for weak scaling

this will become a problem for 10,000+ processors

7

T
p

=T
s

1- a()
p

+a

æ

è

ç
ç

ö

ø

÷
÷

WolframAlpha
• O(1) term in scaling with a=0.0001 assuming strong-scaling (Amdahl's law):

- http://www.wolframalpha.com/input/?i=maximum+1%2F%28%281-

0.0001%29%2Fp%2B0.0001%29+with+p+from+1+to+100000

• O(p) term in scaling with a=0.0001 assuming strong-scaling:
- http://www.wolframalpha.com/input/?i=maximum+1%2F%28%281-

0.0001%29%2Fp%2B0.0001+*+p%29+with+p+from+1+to+1000

• O(p) term in scaling with a=0.0001 assuming weak-scaling:
- http://www.wolframalpha.com/input/?i=maximum+1%2F%28%281-

0.0001%29%2B0.0001+*+p%29+with+p+from+1+to+10000

• O(log2(p)) term in scaling with a=0.0001 assuming strong-scaling:
- http://www.wolframalpha.com/input/?i=maximum+1%2F%28%281-

0.0001%29%2Fp%2B0.0001+*+log2%28p%2B1%29%29+with+p+from+1+to+100000

• O(log2(p)) term in scaling with a=0.0001 assuming weak-scaling:
- http://www.wolframalpha.com/input/?i=maximum+1%2F%28%281-

0.0001%29%2B0.0001+*+log2%28p%2B1%29%29+with+p+from+1+to+100000

• O(log2(p)/p) term in scaling with a=0.0001 assuming strong-scaling:
- http://www.wolframalpha.com/input/?i=maximum+1%2F%28%281-

0.0001%29%2Fp%2B0.0001+*+log2%28p%2B1%29%2Fp%29+with+p+from+1+to+100000

8

http://www.wolframalpha.com/input/?i=maximum+1%2F%28%281-0.0001%29%2Fp%2B0.0001%29+with+p+from+1+to+100000
http://www.wolframalpha.com/input/?i=maximum+1%2F%28%281-0.0001%29%2Fp%2B0.0001+*+p%29+with+p+from+1+to+1000
http://www.wolframalpha.com/input/?i=maximum+1%2F%28%281-0.0001%29%2B0.0001+*+p%29+with+p+from+1+to+10000
http://www.wolframalpha.com/input/?i=maximum+1%2F%28%281-0.0001%29%2Fp%2B0.0001+*+log2%28p%2B1%29%29+with+p+from+1+to+100000
http://www.wolframalpha.com/input/?i=maximum+1%2F%28%281-0.0001%29%2B0.0001+*+log2%28p%2B1%29%29+with+p+from+1+to+100000
http://www.wolframalpha.com/input/?i=maximum+1/((1-0.0001)/p+0.0001+*+log2(p+1)/p)+with+p+from+1+to+100000

Load imbalance
• All tasks have some work to do, but some more than others....

• In general a much harder problem to solve than in shared

variables model

- need to move data explicitly to where tasks will execute

• May require significant algorithmic changes to get right

• Again scaling to large processor counts may be hard

- the load balancing algorithms may themselves scale as O(p) or worse.

• We will look at some techniques in more detail later in the

module

9

• MPI profiling tools report the amount of time spent in each

MPI routine

• For blocking routines (e.g. Recv, Wait, collectives) this time

may be a result of load imbalance.

• The task is blocked waiting for another task to enter the

corresponding MPI call

- the other tasks may be late because it has more work to do

• Tracing tools often show up load imbalance very clearly

- but may be impractical for large codes, large task counts, long runtimes

10

Synchronisation
• In MPI most synchronisation is coupled to communication

- Blocking sends/receives

- Waits for non-blocking sends/receives

- Collective comms are (mostly) synchronising

• MPI_Barrier is almost never required for correctness

- can be useful for timing

- can be useful to prevent buffer overflows if one task is sending a lot of
messages and the receiving task(s) cannot keep up.

- think carefully why you are using it!

• Use of blocking point-to-point comms can result in

unnecessary synchronisation.

- Can amplify “random noise” effects (e.g. OS interrupts)

- see later

11

Communication
• Point-to-point communications

• Collective communications

• Task mapping

12

Small messages
• Point to point communications typically incur a start-up cost

- sending a 0 byte message takes a finite time

• Time taken for a message to transit can often be well modeled

as

where Tl is start-up cost or latency, Nb is the number of bytes

sent and Tb is the time per byte. In terms of bandwidth B:

• Faster to send one large message vs many small ones

- e.g. one allreduce of two doubles vs two allreduces of one double

- derived data-types can be used to send messages with a mix of types

13

T
p

=T
l
+N

b
T
b

T
p

=T
l
+
N
b

B

Communication patterns
• Can be helpful, especially when using trace analysis tools, to

think about communication patterns

- Note: nothing to do with OO design!

• We can identify a number of patterns which can be the cause

of poor performance.

• Can be identified by eye, or potentially discovered

automatically

- e.g. the SCALASCA tool highlights common issues

14

Late Sender

• If blocking receive is posted before matching send, then the

receiving task must wait until the data is sent.

Send

Recv

15

Out-of-order receives

• Late senders may be the result of having blocking receives in

the wrong order.

Send

Recv Recv

Send

Send

Recv Recv

Send

16

Late Receiver

• If send is synchronous, data cannot be sent until receive is

posted

- either explicitly programmed, or chosen by the implementation because

message is large

- sending task is delayed

Send

Recv

17

Late Progress

• Non-blocking send returns, but implementation has not yet

sent the data.

- A copy has been made in an internal buffer

• Send is delayed until the MPI library is re-entered by the

sender.

- receiving task waits until this occurs

Isend

Recv

Recv

18

Non-blocking comms
• Both late senders and late receivers may be avoidable by

more careful ordering of computation and communication

• However, these patterns can also occur because of “random

noise” effects in the system (e.g. network congestion, OS

interrupts)

- not all tasks take the same time to do the same computation

- not all messages of the same length take the same time to arrive

• Can be beneficial to avoid blocking by using all non-blocking

comms entirely (Isend, Irecv, WaitAll)

- post all the Irecv’s as early as possible

19

Halo swapping

loop many times:

irecv up; irecv down

isend up; isend down

update the middle of the array

wait for all 4 communications

do all calculations involving halos

end loop

• Receives not necessarily ready in advance

– remember your recv’s match someone else’s sends!

20

Collective communications

• Can identify similar patterns for collective comms...

21

Late Broadcaster

• If broadcast root is late, all other tasks have to wait

• Also applies to Scatter, Scatterv

Bcast

Bcast

Bcast

22

Early Reduce

• If root task of Reduce is early, it has to wait for all other tasks

to enter reduce

• Also applies to Gather, GatherV

Reduce

Reduce

Reduce

23

Wait at NxN

• Other collectives require all tasks to arrive before any can

leave.

- all tasks wait for last one

• Applies to Allreduce, Reduce_Scatter, Allgather, Allgatherv,

Alltoall, Alltoallv

Alltoall

Alltoall

Alltoall

24

Collectives
• Collective comms are (hopefully) well optimised for the

architecture

- Rarely useful to implement them your self using point-to-point

• However, they are expensive and force synchronisation of

tasks

- helpful to reduce their use as far as possible

- e.g. in many iterative methods, a reduce operation is often needed to

check for convergence

- may be beneficial to reduce the frequency of doing this, compared to the

sequential algorithm

• Non-blocking collectives added in MPI-3

- may not be that useful in practice …

25

Summary
Can divide overheads up into four main categories:

• Lack of parallelism

- Cannot split work up into enough pieces

• Load imbalance

- Pieces for each processor are not identical amount of work

• Synchronisation

- Processors waiting for each other

• Communication

- Inefficient patterns of communication

26

