
ARCHER Single Node
Optimisation
Optimising for the Memory Hierarchy

Slides contributed by Cray and EPCC

Overview
• Motivation
•  Types of memory structures
• Reducing memory accesses
• Utilizing Caches
• Prefetching
• Pointer aliasing

Motivation
• Why is memory structure important?

•  With current hardware memory access has become the most
significant resource impacting program performance.
•  Changing memory structures can have a big impact on code

performance.
•  Memory structures are frequently global to the program

•  Different code sections communicate via memory structures.
•  The programming cost of changing a memory structure can be very

high.

Programmer’s perspective:
• Memory structures are the programmers responsibility

•  At best the compiler can add small amounts of padding in limited
circumstances.

•  Compilers can (and hopefully will) try to make best use of the
memory structures that you specify (e.g. uni-modular
transformations)

• Changing the memory structures you specify may allow
the compiler to generate better code.

Types of data structure
• Arrays
• Pointer arrays
•  records/structures
•  Trees and lists
• Objects

Arrays
• Arrays are large blocks of memory indexed by integer

index
• Probably the most common data structure used in HPC

codes
• Good for representing regularly discretised versions of

dense continuous data
𝑓(𝑥,𝑦,𝑧)→𝐹[𝑖][𝑗][𝑘]

Arrays
•  Multi dimensional arrays use multiple indexes (shorthand)

REAL A(100,100,100) REAL A(1000000)
A (i,j,k) = 7.0 A(i+100*j+10000*k) = 7.0

float A[100][100][100]; float A[1000000];
A [i][j][k] = 7.0 A(k+100*j+10000*i) = 7.0

• Address calculation requires computation but still
relatively cheap.

• Compilers have better chance to optimise where
dimension sizes are known at compile time.

Arrays
• Many codes loop over array elements

•  Data access pattern is regular and easy to predict

• Good spatial locality achieved by accessing neighbouring
elements on consecutive iterations of the innermost loop.

• Unless loop nest order and array index order match the
access pattern may not be optimal for cache re-use.
•  Compiler can potentially address these problems by transforming

the loops.
•  But often can do a better job when provided with a more cache-

friendly index order.

do i=1,n
 do j=1,m
 a(i,j)=a(i,j)+b(i,j)
 end do
end do

do j=1,m
 do i=1,m
 a(i,j)=a(i,j)+b(i,j)
 end do
end do

for(i=0;i<N;i++){
 for(j=0;j<M;j++){
 a[i][j]+=b[i][j];
 }
}

for(j=0;j<M;j++){
 for(i=0;i<N;i++){
 a[i][j]+=b[i][j];
 }
}

Bad spatial locality Good spatial locality

Dynamic sized arrays (Fortran)
• Not always possible/desirable to fix array sizes at compile

time
•  Fortran allows arrays to be dynamically sized based on subroutine

arguments.

• Address calculation can still be optimised using CSE.
• Size of slowest moving index is not needed in address

computation.
•  Fortran actually allows this dimension to be unspecified in

subroutine arguments (assumed size arrays)

Dynamic sized arrays (C)
• C requires array dimensions to be known at compile time.
• However can make slowest dimension variable with

pointers and typedef
typedef float Mat[2][2];
Mat *data =(Mat *) malloc(n*sizeof(Mat));
for(i=0;i<n;i++){
 for(j=0;j<2;j++){
 for(k=0;k<2;k++){
 data[i][j][k] = 12.0;
 }
 }
}

Pointer arrays
•  Alternative to multi-dimensional arrays

•  Pointer to: array of pointers to: array of pointers to: …. Data

•  Note reverse index order to previous example!

float ***data;
data = (float ***) malloc(2*sizeof(float **));
for(i=0;i<2;i++){
 data[i]=(float **) malloc(2*sizeof(float *));
 for(j=0;j<2;j++){
 data[i][j] = (float *) malloc(n*sizeof(float));
 for(k=0;k<n;k++){
 data[i][j][k] = 12.0;
 }
 }
}

Pointer arrays II
•  In C the use-syntax is the same as for arrays

•  a[I][j][k] = 7.0;
•  But actually equivalent to

•  p1 = a[I]
•  p2= p1[j]
•  p2[k] = 7.0

•  Advantage
•  The “columns” are allocated separately and need not be the same length

•  Disadvantages
•  Need multiple memory accesses per element access.
•  Need more memory to store all the pointers
•  Less regular access pattern
•  Messy to create/destroy

Records/structures
•  Collection of values (of varying types)

•  C structs
•  F90 user defined types

•  Good for representing multi-valued data or sparse/scattered
data.

•  Related variables are stored close together may help cache
use.
•  If a code section only uses a subset of the values cache use may

suffer.
•  Easy to add/re-order members without breaking code as

members are referenced by name not position.
•  much harder to remove them.

Structures and the compiler
• Programmer only specifies what a structure contains.
• Compiler chooses layout within the structure.
•  In C the compiler usually preserves the order of members

but inserts padding between members if needed to meet
alignment constraints
•  i.e. Doubles must be aligned on double-word boundaries.
•  Padding reduces cache-line utilisation so order members to reduce

padding.

• Similarly in Fortran but can use SEQUENCE keyword to
force deterministic layout.

Arrays of structs or structs of arrays?

Array of structs

struct Part{
 double x;
 double y;
 double z;
 int index;
 double mass;
}
Part data[numParts];

struct AllParts{
 double x[numParts];
 double y[numParts];
 double z[numParts];
 int index[numParts];
 double mass[numParts];
}
AllParts data;

or

Struct of arrays

Array of structs:
•  May have good temporal locality if there is lots of computation on

each struct
•  May have poor spatial locality if computations don’t
•  Unfavourable for vector loads/stores
•  Natural for OO design

Struct of arrays
•  May have better spatial locality (use all data on cache line), but

worse temporal locality
•  More favourable for vector loads/stores
•  Less natural for OO design

Arrays of structs of (short) arrays

• Vector friendly without compromising temporal locality too
much?

• Not at all natural from a design perspective!

struct FourVecParts{
 double x[4];
 double y[4];
 double z[4];
 int index[4];
 double mass[4];
}
FourVecParts data[(numParts+3)/4];

Objects
• Usually implemented much the same as structures
• But objects are opaque

•  Language restricts access to the internal data.
•  Usually need to use special access functions.

• Much easier to change underlying data structure as this is
only visible to small fraction of the program

• Access functions introduce additional overhead
•  Function calls
•  Memory copies

• Really only a problem for small low-level objects

Trees/lists
• Structures/Objects can contain pointers to other

structures.
•  Can construct trees and lists etc.

• Very flexible and can grow dynamically
•  Same problems as pointer arrays.

•  Additional memory accesses to navigate data
•  Additional storage to store pointers

•  Access pattern is very hard to predict.
•  Limited navigation

•  Can only follow access pattern supported by pointer structure
•  e.g. cannot jump to middle of a list without traversing half the

nodes.

High level data structures
• Many modern languages have built in-support for high

level data structures such as
•  Lists
•  Trees
•  Sets
•  Maps
•  Etc.

• May be available either as built-in data-types or as
standard libraries.
•  Have the same intrinsic advantages/disadvantages as home made

equivalents but typically better tested and optimised.

What can go wrong
• Poor cache/page use

•  Lack of spatial locality
•  Lack of temporal locality

• Unnecessary memory accesses
•  pointer chasing
•  array temporaries

• Aliasing problems
•  Use of pointers can inhibit code optimisation

Reducing memory accesses
• Memory accesses are often the most important limiting

factor for code performance.
•  Many older codes were written when memory access was relatively

cheap.

•  Things to look for:
•  Unnecessary pointer chasing

•  pointer arrays that could be simple arrays
•  linked lists that could be arrays.

•  Unnecessary temporary arrays.
•  Tables of values that would be cheap to re-calculate.

Utilizing caches
• Want to avoid cache conflicts

•  This happens when too much related data maps to the same cache
set.

•  Arrays or array dimensions proportional to (cache-size/set-size)
can cause this.

•  Rarely a problem with 8- and 16-way associative caches on XC30
•  Lots of accesses in a loop to arrays with power-of-2 dimensions

might still be bad
•  Can pad arrays to avoid this.

Utilizing caches II
• Want to use all of the data in a cache line

•  loading unwanted values is a waste of memory bandwidth.
•  structures are good for this
•  Or loop fastest over the corresponding index of an array.

• Place variables that are used together close together
•  Also have to worry about alignment with cache block boundaries.

• Avoid “gaps” in structures
•  In C structures may contain gaps to ensure the address of each

variable is aligned with its size.

Bad Cache Alignment
CrayPAT profiling with export	
 PAT_RT_HWPC=2 (L1 and L2 metrics)

Time% 0.2%
Time 0.000003
Calls 1
PAPI_L1_DCA 455.433M/sec 1367 ops
DC_L2_REFILL_MOESI 49.641M/sec 149 ops
DC_SYS_REFILL_MOESI 0.666M/sec 2 ops
BU_L2_REQ_DC 74.628M/sec 224 req
User time 0.000 secs 7804 cycles
Utilization rate 97.9%
L1 Data cache misses 50.308M/sec 151 misses
LD & ST per D1 miss 9.05 ops/miss
D1 cache hit ratio 89.0%
LD & ST per D2 miss 683.50 ops/miss
D2 cache hit ratio 99.1%
L2 cache hit ratio 98.7%
Memory to D1 refill 0.666M/sec 2 lines
Memory to D1 bandwidth 40.669MB/sec 128 bytes
L2 to Dcache bandwidth 3029.859MB/sec 9536 bytes

cf: 8

Good Cache Alignment
Time% 0.1%
Time 0.000002
Calls 1
PAPI_L1_DCA 689.986M/sec 1333 ops
DC_L2_REFILL_MOESI 33.645M/sec 65 ops
DC_SYS_REFILL_MOESI 0 ops
BU_L2_REQ_DC 34.163M/sec 66 req
User time 0.000 secs 5023 cycles
Utilization rate 95.1%
L1 Data cache misses 33.645M/sec 65 misses
LD & ST per D1 miss 20.51 ops/miss
D1 cache hit ratio 95.1%
LD & ST per D2 miss 1333.00 ops/miss
D2 cache hit ratio 100.0%
L2 cache hit ratio 100.0%
Memory to D1 refill 0 lines
Memory to D1 bandwidth 0 bytes
L2 to Dcache bandwidth 2053.542MB/sec 4160 bytes

Cache blocking

• A combination of:
•  strip mining (also called loop blocking, loop tiling...)
•  loop interchange

• Designed to increase data reuse:
•  temporal reuse: reuse array elements already referenced
•  spatial reuse: good use of cache lines

• Many ways to block any given loop nest
•  Which loops should be blocked?
•  What block size(s) will work best?

• Analysis can reveal which ways are beneficial
•  How big is your cache?

•  L1 is 32kB on Ivybridge.
•  How many cache lines can it hold?

•  each line typically 64B, so
•  How many cache lines are needed per loop iteration?
•  ...

• But trial-and-error is probably faster
•  or autotuning of the code

Loop tiling

30

for (i=0;i<n;i++){
 for (j=0;j<n;j++){
 a[i][j]=b[j][i];
 }
}

for (ii=0;ii<n;ii+=B){
 for (jj=0;jj<n;jj+=B){
 for (i=ii;i<ii+B;i++){
 for (j=jj;j<jj+B;j++){
 a[i][j]=b[j][i];
 }
 }
 }
}

j
i

j

i

Loop tiling for vectorisation

31

for (i=0;i<n;i++){
 for (j=1;j<n-1;j++){
 a[i][j]=(a[i][j-1] + a[i][j+1])/2.0 ;
 }
}

for (ii=0;ii<n;ii+=B){
 for (j=1;j<n-1;j++){
 for (i=ii;i<ii+B;i++){
 a[j][i]=(a[j-1][i] + a[j+1][i])/2.0 ;
 }
 }
}

j loop won’t vectorise due to dependencies

i loop will vectorise
but note change of data layout

Further cache optimisations

•  If multiple loop nests process a large array
•  First element of array will be out of cache when second loop nest starts

•  Improving cache use
•  Consider fusing the loop nests

•  Completely: just have one loop nest
•  Partial: have one outer loop, containing multiple inner loops

•  Beware that too much fusion can result in lots of temporaries and cause
the compiler to run out of registers....

Original code Complete fusion Partial fusing
do	
 j	
 =	
 1,	
 Nj	

	
 do	
 i	
 =	
 1,	
 Ni	

	
 	
 a(i,j)=b(i,j)*2	
 	
 	

	
 enddo	

enddo	

	

do	
 j	
 =	
 1,	
 Nj	

	
 do	
 i	
 =	
 1,	
 Ni	

	
 	
 a(i,j)=a(i,j)+1	
 	
 	

	
 enddo	

enddo	

do	
 j	
 =	
 1,	
 Nj	

	
 do	
 i	
 =	
 1,	
 Ni	

	
 	
 a(i,j)=b(i,j)*2	
 	
 	

	
 	
 a(i,j)=a(i,j)+1	
 	
 	

	
 enddo	

enddo	

do	
 j	
 =	
 1,	
 Nj	

	
 do	
 i	
 =	
 1,	
 Ni	

	
 	
 a(i,j)=b(i,j)*2	
 	
 	

	
 enddo	

	
 do	
 i	
 =	
 1,	
 Ni	

	
 	
 a(i,j)=a(i,j)+1	
 	
 	

	
 enddo	

enddo	

Further cache optimisations
•  Perhaps cache block before fusing

•  Fuse one or more of the outer blocking loops
•  If multiple subprograms process the array

•  Remove one or more outer loops (or all loops) from subprograms
•  Haul loop into parent routine, pass in index values instead
•  Might want to ensure that compiler is inlining this routine
•  This technique is very useful if you want to use OpenMP/OpenACC

•  Beware of Fortran
•  array syntax often bad

•  a(:,:)=b(:,:)*2	

•  a(:,:)=a(:,:)+1	

•  compiler unlikely to fuse any loops

Original code
CALL	
 sub1(a,b)	

CALL	
 sub2(a)	

	

SUBROUTINE	
 sub1(a)	

	
 do	
 j=1,Nj	

	
 	
 do	
 i=1,Ni	

	
 	
 	
 a(i,j)=b(i,j)*2	
 	
 	

	
 	
 enddo	

	
 enddo	

END	
 SUBROUTINE	
 sub1	

After hauling
do	
 j	
 =	
 1,	
 Nj	

	
 CALL	
 sub1(a,b,j)	

	
 CALL	
 sub2(a,j)	

enddo	

	

SUBROUTINE	
 sub1(a,j)	

	
 do	
 i=1,Ni	

	
 	
 a(i,j)=b(i,j)*2	
 	
 	

	
 enddo	

END	
 SUBROUTINE	
 sub1	

Optimising for TLB

• Aim to reuse data on a page
•  i.e. treat similarly to a cache

• Standard-sized pages are 4kB
•  But you can use larger "huge" pages

•  128kB, 512kB, 2MB,... 64MB
•  Almost always benefit HPC applications

•  regular data accesses
•  huge pages give fewer TLB misses

•  Huge pages can also help communication performance

• To use huge pages (see man	
 intro_hugepages)
•  Load chosen craype-­‐hugepages*	
 module

•  See module	
 avail	
 craype-­‐hugepages for list of available
options

•  2M or 8M are usually most successful on Cray XC30

• Compile as before
• Make sure this module is also loaded in PBS jobscript

•  quick cheat: can load a different-sized hugepages module at
runtime
•  compile-time module enables hugepages, runtime one determines

actual size

Prefetch
• Some processors (including Ivy Bridge) prefetch

automatically
• Regular access patterns are recognized and cache lines

fetched in advance.
•  Usually only works for contiguous sequence of cache misses.

• Processor has a set of stream buffers
•  Each holds address of an active stream
•  Loads to the current block causes the next block to be prefetched

and the stream address to be updated.
•  Streams are established by series of cache misses to consecutive

locations

Using streams
•  To utilize stream hardware use linear access patterns

where possible
•  Only the order of cache block accesses needs to be linear, not

each word access.

• Most loops will require multiple streams
•  If the loop requires more streams than are supported in hardware

no prefetching will take place for some of the loads.
•  Consider splitting the loop.

• Prefetching typically cannot cross OS page boundaries
•  huge pages may help

Pointer aliasing
• Pointers are variables containing memory addresses.

•  Pointers are useful but can seriously inhibit code performance.

• Compilers try very hard to reduce memory accesses.
•  Only loading data from memory once.
•  Keep variables in registers and only update memory copy when

necessary.

• Pointers could point anywhere, so to be safe compiler will:
•  Reload all values after write through pointer
•  Synchronize all variables with memory before read through pointer

Pointers and Fortran
•  F77 had no pointers
• Arguments passed by reference (address)

•  Subroutine arguments are effectively pointers
•  But it is illegal Fortran if two arguments overlap

•  F90/F95 has restricted pointers
•  Pointers can only point at variables declared as a “target” or at the

target of another pointer
•  Compiler therefore knows more about possible aliasing problems

•  Try to avoid F90 pointers for performance critical data
structures.

Pointers and C
•  In C pointers are unrestricted

•  Can therefore seriously inhibit performance
•  Almost impossible to do without pointers

•  malloc requires the use of pointers.
•  Pointers used for call by reference. Alternative is call by value where all

data is copied!
•  Use the C99 restrict keyword where possible
•  ...or else use compiler flags

•  CCE: -h restrict
•  Intel: -fnoalias
•  GNU: ??

•  Explicit use of scalar temporaries may also reduce the problem

