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Quick Overview
• Projects

• What
• Structure

• Teams
• What
• Structure

• Communications
• Who, When, How



Project Definition
• A Project definition:

• A Project is a set of actions involving a variety of human and 
structural resources with a specified set of goals to be achieved in 
a specified time period for a specified cost

• Three antagonistic attributes:
• Quality
• Time 
• Cost

• Let’s look at these antagonistic attributes in a software 
development project
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Project Definition (cont)
• Balance is the key

• If you fix the Cost, reducing Time affects the Quality
• If you fix the Quality, reducing Time increases the Cost
• If you fix the Time, reducing Cost hits the Quality
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Information Flow in a Project
• Three categories of involved parties

• Customer
• Manager
• Developer

• This is the usual route of communication
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Project Joys
• Projects have alarming properties:

• Projects go over budget
• Projects overrun
• Projects go belly-up
• Deliverables are buggy or incomplete

• There are two reasons for it:
• They are complicated business by nature
• They are surrounded by myths

• Despite all that the challenge of solving software puzzles 
generally makes for satisfying work
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Software Development Issues

• Software development is inherently complex and difficult
• You may not believe that but it is true

• Working in groups of X:
• Write down some issues which could affect software development 

projects
• Now try and categorise them in the following:

• Technical
• Customer
• Developer
• Management
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Technical Issues

• There are problems regarding the tools we use to develop 
software
• Prevalent languages are not entirely suitable for the tasks at hand
• Support tools are either expensive or of limited use (or both)

• Low level tools for high complexity tasks
• Higher level tools are still being developed and have problems of their 

own
• Software projects grow larger and larger

• A project can be 50000 lines of code and still be considered small
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Customer Issues
• Mainly lack of understanding
• The requirements gap problem

• Customers are usually not experts in software development
• Developers are usually not experts in the field that the project 

addresses
• Somehow knowledge of the software’s requirements must get from 

customer to developer
• Targets can (and do) change
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Customer Issues (cont)

• The requirements gap makes software development hard 
enough

• Customer-related commercial pressures complicate 
things further
• How can you choose a deadline when you don’t know what is 

required of the software
• Same goes for budget
• This is often not understood by the customer
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Developer Issues

• What is software development?
• We become programmers first, developers second

• Our first programs are almost certainly written without knowledge of 
software development

• Many people have no formal training before becoming 
professional software developers

• Training is not geared towards development techniques
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Developer Issues (cont)

• The training shortfall
• Areas that training addresses strongly

• Programming
• Areas that training addresses to a certain extent

• Design techniques
• Documentation
• Testing

• Areas that are rarely addressed by training
• Software development scheduling
• Customer interaction
• Software development administration
• Etc...
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Management  Issues
• Resource Management

• Having the right staff available at the right time

• Mythical Project
• Mythical Staff
• ….
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The Great Development Myths

• A collection of misconceptions and assumptions which 
occur all too often in software development

• At the heart of this is the concept of the Mythical 
Developer

• This supports the concept of the Mythical Project

15



The Mythical Developer
• The Mythical Developer’s general attributes

• Perfect memory
• No morale problems
• Fully multitasking - insignificant overheads

• The Mythical Developer’s software design attributes 
• Doesn’t need much of a design as they have done this sort of 

thing before
• Will have the design come to them whilst coding
• Will write a design which should not need any major revisions 

after the first version
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The Mythical Developer (cont)
• Scheduling attributes

• Great at estimating length of tasks
• Will always finish a task on time
• Can make up time later on
• Will get twice as much done by working twice the hours

• Tracking and Resource Management attributes
• Knows exactly where they are in a project
• Never overwrites project files accidentally
• Knows exactly what changes they have made to the code
• Can turn a prototype code version into a good finished product
• Is slowed down by all this reporting and paper work
• Should be left to do their own thing
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The Real Developer
• Of course, we know that we were not talking about a real 

person
• The profile of a Real Developer looks more like this...
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The Real Developer (cont)
• The Real Developer’s attributes

• Has imperfect memory and variable morale 
• Is affected by multitasking and overworking
• Will always need a well thought design

• …and will always need to update it as work progresses
• Will always fail in the initial estimation
• May overwrite files
• Will be more effective in the long run if project tracking and 

documentation is applied
• Will need to recode less if coordinated with management and team

• They are only human
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Mythical vs. Real
• Mythical Developers are (unsurprisingly) hard to find
• Yet all too often software projects are run as if staffed 

entirely by Mythical Developers
• Why is this?

• Management misconceptions
• Developer misconceptions
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Management Misconceptions

• Management have to make sure that the clients are 
happy with the progress of the project

• Cutting out work that does not produce code looks good 
at the start of the project

• Developers are expected to “pull through” making use of 
their mythical properties

• Management struggle to appreciate the ability of their 
developers
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Developer Misconceptions
• When optimistic, real developers can show signs of being 

mythical developers
• Start of a project is the usual time for this

• Sometimes can show signs of being very human
• Middle/end of a project is the usual time for this

• A challenging task can pull them off track
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Addressing the Issues
• How can we solve the difficulties?

• We can do something about technical issues
• Tools technology advances
• Management realise the need for appropriate tools for the job

• We can do something about some developer issues
• More project-oriented training for people entering development
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Addressing the Issues (cont)

• Not all difficulties can be solved
• We can do little about customer issues

• The process of getting our requirements from the customer is always 
going to be involved

• The customer will always want to know when the software will be 
finished-nothing else

• Software development is by nature complex
• So perhaps we should organise the effort better

• These issues will not go away, but there are techniques 
with which we can reduce the risks they represent
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What Is Process?
• A description for “Process”:

• “ Process is a wide category of activities whose application to a 
software project can substantially increase the chance of project 
success”

• Process should not be SCARY!!!! or BUREAUCRATIC!!!!
• How can increase the chance of success?

• By encouraging project partners (participants) to conduct 
meaningful communication

• By allowing project partners (participants) to understand the state 
of the project at any given time

• By providing project partners (participants) with methods to 
ensure that the project does not deviate uncontrollably from its 
ideal state

• By dismissing myths
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Where Is Process?
• Process sits between communicating parties and 

standardises their interaction
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Where Is Process? (cont)
• Process also sits between project partners and the project 

itself guiding its development
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What is in the Process?

• In groups of X, try and come up with what Process may 
cover in a project in terms of activity or task.



What Makes Up Process?
• Process is a collective term covering the following tasks:

• Scheduling
• Application design
• Change control
• Revision planning
• Project group communication
• Risk management
• Role assignment
• and more…
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Process Misconceptions
• Be aware of what Process is not…

• Process is not a radical new method for developing
• Process is not a rigid and inflexible system
• Process is not design
• SCARY!!!!
• BUREAUCRATIC!!!!

30



Process Is Not a Radical Method

• Process is not a new paradigm for software development
• It is merely the implementation of sensible practices to keep a 

project on track and manage the risks of software development

• All projects have some sort of Process
• If a project is not considered to have Process, it actually just has a 

very poor Process
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Not a Rigid, Inflexible Process

When talking about Process, many developers think of 
RIPs (Rigid, Inefficient Processes)
• Process can be made rigid and inflexible, but it is not necessarily 

so
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Process Is Not a Silver Bullet

• Process will not automatically save your project
• Bad Process will probably not help your project

• Process must be included and practised in an intelligent 
manner to be of use
• From the start of the project as well

• But done in this way, it will almost certainly help
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Process Benefits
• Process is not a bad thing

• Because it keeps the project within its targets
• Makes sure there are some, for a start!

• Because it keeps management and developers in contact
• Because it keeps customers happy

• Gives them some insight
• Helps to provide the expected results

•So why do we keep avoiding it?
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The “No-Process” Project
• Success is anticipated from mythical properties
• Important concepts

• Let the developers do their thing
• Process = non-coding effort = thrashing
• Management wants code as proof of progress
• Management wants to know percentages done

35



The “No-Process” Project
• The mythical “No-Process” Project in action
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The “No-Process” Project (cont)

• The real “No-Process” Project
• Important concepts

• Development starts quickly
• As its complexity increases, so does the thrashing
• Partly finished code is considered finished to appease 

management
• Percentages rarely mean anything
• Process brought in, but by now is too late to help
• If the project is lucky, it will finish before thrashing takes over and 

no useful work is done any more
• If unlucky, abandon project
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The “No-Process” Project (cont)
• The real “No-Process” Project in action
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The “Process-Based” Project

• The mythical “Process-Based” Project
• Important concepts

• Spends too much time mired in bureaucracy
• Not enough time utilised for useful work
• Process is the anathema of the Mythical Developer

• “… and we have got so many of them around”

• Please note: the myths are pessimistic
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The “Process-Based” Project (cont)

• The real “Process-Based” Project
• Important concepts

• Process is integral to the project
• Throughout the project, all work done is managed through Process
• Helps keep thrashing to a tolerable level
• Less chance of project failure
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The “Process-Based” Project (cont)
• The real “Process-Based” Project in action
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Projects Summarised

• The mythical project is everyone’s dream
• Produces timely projects, at a low cost and with great features

• Only one problem
• Mythical developers are thin on the ground
• Most projects must make do with real developers
• A mythical project with real developers ends up looking like a real 

project
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Projects Summarised (cont)
• The Real Project summarised

• The real project can be a nightmare
• Projects can end up running over schedule, over budget
• Projects can end up being way below desirable quality
• Projects can even fail to finish

• How can we turn this around?
• “Process” is the way to concert, monitor and standardise software 

development in your project

• Using Process does not guarantee success
• It does make it far more likely though
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Project Teams
• Task

• Form teams of X – with people you either don’t work with, haven’t 
worked with or don’t know

• Make sure you know who each other is
• You will be working together for the rest of the course

• Task
• What are the roles on a project team in software development?
• Quick list



Teams & Role Assignment
• Traditional software development has a number of 

established roles
• Manager
• Developer
• Tester
• End User Liaison

• These may or may not be precisely defined
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Role Assignment (cont)
• Other roles may be completely overlooked

• Risk Officer
• Change Officer
• Quality Assurer

• These roles are created by the use of good Process 
within a project
• But we still need to make sure these tasks are carried out properly.
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Role Assignment (cont)
• Why are such roles usually overlooked

• They are simply not thought of (poor Process)
• The project is too small to justify team members assigned to 

perform them
• They are considered peripheral to the development of the 

application
• They are deemed to be “obvious” and are expected to just 

“happen” during the course of development

• But failure to manage risks and quality are two of the 
biggest reasons why software projects fail
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Role Assignment Execution
• Each role has a definite and established set of duties
• The act of assigning roles is like giving team members 

different hats to wear
• Team members swap hats when necessary and perform the tasks 

associated with it
• Assigning project time to carrying out the role makes team 

members change their hats to carry out the role’s duties
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Roles
• A list of established roles

• Project manager
• Product manager
• Architect
• User interface designer
• End user liaison
• Developer
• Quality assurance tester
• Tool smith
• Build coordinator
• Risk officer
• End user documentation specialist
• Test client
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Role Allocation
• How you assign roles depends on project size

• Large projects
• Each role may be carried out by a team of people
• Many team members per role

• Small projects
• Each team member gets several roles to fulfil
• Many roles per team member
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Role Assignment Example 

• A typical small project
• Recognised roles

• Manager
• Developer
• Technical reviewer (maybe)

• These roles should have an established set of duties
• All other roles are implicit

• Some carried out in an ad hoc fashion
• Some not carried out at all
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The Manager’s Roles

• Most of a manager’s roles will have an executive nature
• Project Manager
• Product Manager
• End User Liaison

• Often in small projects, managers are also technically 
minded
• Architect
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The Developer’s Roles

• As well as Development, one or more developers will 
have to take on some of the duties below
• Architect
• User Interface Designer
• Quality Assurance tester
• Tool smith
• Build coordinator
• End user documenter
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The Technical Reviewer’s Roles

• The technical reviewer can act in many of the “devil’s 
advocate” roles
• Quality assurer
• Change officer
• Risk officer
• Test client

• Being removed from the daily Process of the project 
enables the technical reviewer to look at the project from 
a different angle
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RACI Matrix
• Responsible, Accountable, Informed, Consulted
• Helps to confirm/clarify roles and responsibilities
• Helps to manage all the roles, responsibilities and tasks 

across departments, people and processes, …
• Particularly when a number of organisations are involved.
• Also known as RAM – Responsibility Assignment Matrix and 

other names, eg ARCI, Linear Responsibility Chart.
• A number of variations too 

• RASCI where S = Support
• CAIRO = where O = Omitted or Out of the lop
• DACI – Driver, Approver, Contributors, Informed
• ….
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RACI Matrix (cont).
• Responsible – the person who actually does the work

• Accountable – the person answerable to the completion of the 
work, The person who delegates the task to the responsible 
person.

• Consulted – the people asked their opinion

• Informed – the people kept up to date on progress, usually 
only one way communication
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RACI Matrix Example
• Responsible, Accountable, Informed, Consulted
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Tasks or Roles Manager Developer Technical 
Reviewer

Project Management A,R C I
Product Management A,R C I

Architect A,C R C,I

User Interface Design A R C,I

Build Coordination A R I

Risk Officer A,C C,I R

Change Officer A,C C,I R

…….



A Practice Start
• Over the course you will be working on a prototype piece 

of software, you have to work as a team, analyse it, do 
some design and reworking, usability work, planning and 
estimation.

• Now – in your teams, decide on the main roles you think 
you would need (note in these exercises everyone should 
be able to contribute at all points)

• Draft a team structure – who has what hats?



Some Questions
• Why Communicate?

• Who Communicates?

• How and When?



Bad Communication
• What is it?
• Effects of Bad Communication
• And what happens is

• Deadlines are missed
• Time is wasted
• Requirements are not satisfied
• Deliverables are buggy or incomplete
• Team gets frustrated
• Users get disillusioned
• Funders get nervous

• And our project
• Goes over budget
• Over-runs
• Goes belly-up and down the tubes



An incomplete list of ways
• Meetings – Formal and informal
• Reports
• Emails
• Singular Phone call
• Conference call
• Voice mail
• Web Communications



Pros and Cons



Recording What Communication Works
• May seem a boring task
• Record what works

• What has most participation
• What moves the work forward
• How the actions and knowledge are passed on

• Easy to do? – depends on what is being recorded



Recording Meetings
• Decide not to record the meeting at all
• Take written notes and minutes
• Record key points visibly, such as on newsprint or a 

chalkboard
• Tape--usually by audiotape, but occasionally by videotape as 

well

• Quick Task: In your teams, have a short meeting to discuss a 
topic – each of you try and record what was said in the 
meeting – then compare



Public vs Private
• Does everything have to be public?
• What is the difference to the project?
• Legal Reasons?
• Social Reasons?
• Effects on developers?



Tools
• Can technology help?
• Telephones
• Web Conferencing
• Blogs
• IM
• Microblogs
• Wikis
• Email
• ……



Communications
• Projects involve communication

• Customers
• Managers
• Developers
• Users

• Neglecting communication can doom projects
• Many and varied

• Co-operative activities
• Information communicated
• Tools available

• Tools support but cannot replace process


