
MPI and OpenMP



Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

https://creativecommons.org/licenses/by-nc-sa/4.0/

This means you are free to copy and redistribute the material and adapt and build on the 
material under the following terms: You must give appropriate credit, provide a link to the 
license and indicate if changes were made. If you adapt or build on the material you must 

distribute your work under the same license as the original.

Acknowledge EPCC as follows: “© EPCC, The University of Edinburgh, www.epcc.ed.ac.uk”

Note that this presentation contains images owned by others. Please seek their permission 
before reusing these images.

2

https://creativecommons.org/licenses/by-nc-sa/4.0/


Overview

• Motivation

• Potential advantages of MPI + OpenMP

• Problems with MPI + OpenMP

• Styles of MPI + OpenMP programming

- MPI’s thread interface

3



Motivation

• With the ubiquity of multicore chips, almost all current CPU systems 

are clustered architectures

• Distributed memory systems, where each node consist of a shared 

memory multiprocessor (SMP).

• Single address space within each node, but separate nodes have 

separate address spaces.  

4



Programming clusters

• How should we program such a machine? 

• Could use MPI across whole system

• Cannot (in general) use OpenMP/threads across whole 

system

- requires support for single address space

- this is possible in software, but inefficient

- also possible in hardware, but expensive

• Could use OpenMP/threads within a node and MPI 

between nodes

- is there any advantage to this? 

5



Expectations

• In general, MPI + OpenMP does not improve performance 

(and may be worse!) in the regime where the MPI 

application is scaling well.

• Benefits come when MPI scalability (either in time or 

memory) starts to run out

• MPI + OpenMP may extend scalability to larger core 

counts 

6



Typical performance curves

7



Potential advantages of MPI + OpenMP

• Reducing memory usage

• Exploiting additional levels of parallelism

• Reducing load imbalance

• Reducing communication costs

8



Reducing memory usage

• Some MPI codes use a replicated data strategy
- all processes have a copy of a major data structure 

• Classical domain decomposition codes have replication in 
halos

• MPI internal message buffers can consume significant 
amounts of memory

• A pure MPI code needs one copy per process/core.

• A mixed code would only require one copy per node
- data structure can be shared by multiple threads within a process

- MPI buffers for intra-node messages no longer required

• Will be increasingly important
- amount of memory per core is not likely to increase in future

9



Effect of domain size on halo storage

Local domain size Halos % of data in halos

503 = 125000 523 – 503 = 15608 11%

203 = 8000 223 – 203 = 2648 25%

103 = 1000 123 – 103 = 728 42%

• Typically, using more processors implies a smaller domain size per 

processor 

– unless the problem can genuinely weak scale

• Although the amount of halo data does decrease as the local domain size 

decreases, it eventually starts to occupy a significant amount fraction of 

the storage

– even worse with deep halos or >3 dimensions 

10



Exploiting additional levels of parallelism

• Some MPI codes do not scale beyond a certain core 

count because they run out of of available parallelism at 

the top level.

• However, there may be additional lower levels of 

parallelism that can be exploited.

• In principle, this could also be done using MPI.

• In practice this can be hard

- The lower level parallelism may be hard to load balance, or have 

irregular (or runtime determined) communication patterns.

- May be hard to work around design decisions in the original MPI 

version.

11



• It may, for practical reasons, be easier to exploit the 

additional level(s) of parallelism using OpenMP threads.

• Can take an incremental (e.g. loop by loop) approach to 

adding OpenMP

- maybe not performance optimal, but keeps development cost/time 

to a minimum. 

• Obviously OpenMP parallelism cannot extend beyond a 

single node, but this may be enough

- future systems seem likely to have more cores per nodes, rather 

than many more nodes

12



Reducing load imbalance

• Load balancing between MPI processes can be hard

- need to transfer both computational tasks and data from overloaded to 

underloaded processes

- transferring small tasks may not be beneficial 

- having a global view of loads may not scale well

- may need to restrict to transferring loads only between neighbours

• Load balancing between threads is much easier

- only need to transfer tasks, not data

- overheads are lower, so fine grained balancing is possible 

- easier to have a global view

• For applications with load balance problems, keeping the 

number of MPI processes small can be an advantage

13



Reducing communication costs

• It is natural to suppose that communicating data inside a 

node is faster between OpenMP threads than between 

MPI processes.

- no copying into buffers, no library call overheads

• True, but there are lots of caveats – see later. 

• This is rarely the bottleneck in MPI codes.

• In some cases, MPI codes actually communicate more 

data than is actually required

- where actual data dependencies may be irregular and/or data-

dependent

- makes implementation easier

14



Collective communication

• In some circumstances, collective communications can be 

improved by using MPI + OpenMP

- e.g. AllReduce, AlltoAll

• In principle, the MPI implementation ought to be well 

optimised for clustered architectures, but this isn’t always 

the case.

- hard to do for AlltoAllv, for example

• Can be cases where MPI + OpenMP transfers less data

- e.g. AllReduce where every thread contributes to the sum, but only 

the master threads use the result

15



Example

• ECMWF IFS weather forecasting code

• Semi-Lagrangian advection: require data from 

neighbouring grid cells only in an upwind direction.

• MPI solution – communicate all the data to neighbouring

processors that could possibly be needed.

• MPI + OpenMP solution – within a node, only read data 

from other threads’ grid point if it is actually required

- Significant reduction in communication costs 

- Significant reduction in memory usage

16



IFS example

17



Problems with MPI + OpenMP

• Development/maintenance costs

• Portability

• Libraries

• Performance pitfalls

18



Development / maintenance costs

• In most cases, development and maintenance will be 

harder than for a pure MPI code.

• OpenMP programming is easier than MPI (in general), but 

it’s still parallel programming, and therefore hard!

- application developers need yet another skill set 

• OpenMP (as with all threaded programming) is subject to 

subtle race conditions and non-deterministic bugs

- correctness testing can be hard 

19



Portability

• Both OpenMP and MPI are themselves highly portable 

(but not perfect). 

• Combined MPI/OpenMP is less so

- main issue is thread safety of MPI 

- if maximum thread safety is assumed, portability will be reduced

• Desirable to make sure code functions correctly (maybe 

with conditional compilation) as stand-alone MPI code 

(and as stand-alone OpenMP code?)

20



Libraries

• If the pure MPI code uses a distributed-memory library, 

need to replace this with a hybrid version.

• If the pure MPI code uses a sequential library, need to 

replace this with either a threaded version called from the 

master thread, or a thread-safe version called inside 

parallel regions.

• If thread/hybrid library versions use something other than 

OpenMP threads internally, can get problems with 

oversubscription.

- Both the application and the library may create threads that might 

not idle nicely when not being used  

21



Performance pitfalls

• Adding OpenMP may introduce additional overheads not 

present in the MPI code

- e.g. synchronisation, false sharing, sequential sections, NUMA effects).

• Adding OpenMP introduces a tunable parameter – the number 

of threads per MPI process

- optimal value depends on hardware, compiler, input data

- hard to guess the right value without experiments

• Placement of MPI processes and their associated OpenMP

threads within a node can have performance consequences.

22



• An incremental, loop by loop approach to OpenMP is easy to 

do, but it can be hard to get sufficient parallel coverage

- just Amdahl’s law applied inside the node

P P P P PP P P P P PP

MPI MPI + OpenMP

23



More pitfalls...
• Mixed implementation may require more synchronisation 

than pure OpenMP, if non-thread-safety of MPI is assumed.

• Implicit point-to-point synchronisation via messages may be 

replaced by (more expensive) barriers. 

- Loose thread to thread synchronisation is hard to do in OpenMP

• In the pure MPI code, the intra-node messages will often be 

naturally overlapped with inter-node messages

- harder to overlap inter-thread comms with inter-node messages

• OpenMP codes can suffer from false sharing

- cache-to-cache transfers caused by multiple threads accessing 

different words in the same cache block; MPI naturally avoids this.

24



NUMA effects

• Nodes which have multiple sockets are NUMA

- each socket (CPU) has its own block of RAM.

• OS allocates virtual memory pages to physical memory

- has to choose a socket for every page

• Common policy (default in Linux) is first touch – allocate 

on socket where the first read/write comes from

- right thing for MPI

- worst possible for OpenMP if data initialisation is not parallelised

- all data goes onto one socket

• NUMA effects can limit the scalability of OpenMP

- it may be advantageous to run one MPI process per NUMA 

domain, rather than one MPI process per node.

25



Process/thread placement

• On NUMA nodes need to make sure that:

- MPI processes are spread out across sockets

- OpenMP threads are on the same socket as their parent process

• Not all batch systems do a good job of this....

- can be hard to fix this as a user

- gets even more complicated if SMT (e.g. Hyperthreads) is used. 

26



Styles of MPI + OpenMP programming

• Can identify 4 different styles of MPI + OpenMP

programming, depending on when/how OpenMP threads 

are permitted to make MPI library calls

• Each has its advantages and disadvantages

• MPI has a threading interface which allow the 

programmer to request and query the level of thread 

support

27



The 4 styles
• Master-only

- all MPI communication takes place in the sequential part of the 

OpenMP program (no MPI in parallel regions)

• Funneled

- all MPI communication takes place through same (master) thread 

which can be inside parallel regions

• Serialized

- only one thread makes MPI calls at any one time

- distinguish sending/receiving threads via tags or communicators

- be very careful about race conditions on send/recv buffers etc.

• Multiple

- MPI communication simultaneously in more than one thread

- some MPI implementations don’t support this …and those which do 

mostly don’t perform well

28



OpenMP Master-only

!$OMP parallel

work…

!$OMP end parallel

call MPI_Send(…)

!$OMP parallel

work…

!$OMP end parallel

#pragma omp parallel

{

work…

}

ierror=MPI_Send(…);

#pragma omp parallel

{

work… 

}

Fortran C

29



OpenMP Funneled

!$OMP parallel

… work

!$OMP barrier

!$OMP master

call MPI_Send(…)

!$OMP end master

!$OMP barrier

.. work

!$OMP end parallel

#pragma omp parallel

{

… work

#pragma omp barrier

#pragma omp master

{  

ierror=MPI_Send(…);

}

#pragma omp barrier

… work

}

Fortran C

30



OpenMP Serialized

!$OMP parallel

… work

!$OMP critical

call MPI_Send(…)

!$OMP end critical

… work

!$OMP end parallel

#pragma omp parallel

{

… work

#pragma omp critical

{  

ierror=MPI_Send(…);

}

… work

}

Fortran C

31



OpenMP Multiple

!$OMP parallel

… work

call MPI_Send(…)

… work

!$OMP end parallel

#pragma omp parallel

{

… work 

ierror=MPI_Send(…);

… work

}

Fortran C

32



Thread Safety

• Making MPI libraries thread-safe is difficult

- lock access to data structures

- multiple data structures: one per thread

- …

• Adds significant overheads

- which may hamper standard (single-threaded) codes

• MPI defines various classes of thread usage

- library can supply an appropriate implementation

33



MPI_Init_thread
• MPI_Init_thread works in a similar way to MPI_Init by initialising MPI on the 

main thread.

• It has two integer arguments:

- Required ([in] Level of desired thread support )

- Provided ([out] Level of provided thread support

• C syntax

int MPI_Init_thread(int *argc, char *((*argv)[]), int

required, int *provided);

• Fortran syntax

MPI_INIT_THREAD(REQUIRED, PROVIDED, IERROR)

INTEGER REQUIRED, PROVIDED, IERROR

34



MPI_Init_thread

• MPI_THREAD_SINGLE

- Only one thread will execute. 

• MPI_THREAD_FUNNELED

- The process may be multi-threaded, but only the main thread will make 

MPI calls (all MPI calls are funneled to the main thread). 

• MPI_THREAD_SERIALIZED

- The process may be multi-threaded, and multiple threads may make MPI 

calls, but only one at a time: MPI calls are not made concurrently from two 

distinct threads (all MPI calls are serialized). 

• MPI_THREAD_MULTIPLE

- Multiple threads may call MPI, with no restrictions.

35



MPI_Init_thread

• These integer values are monotonic; i.e., 

- MPI_THREAD_SINGLE  <  MPI_THREAD_FUNNELED       < 

MPI_THREAD_SERIALIZED < MPI_THREAD_MULTIPLE

• Note that these values do not strictly map on to the 

four MPI/OpenMP Mixed-mode styles as they are more 

general (i.e. deal with Posix threads where we don’t 

have “parallel regions”, etc.)

- e.g. no distinction here between Master-only and Funneled

- see MPI standard for full details

36



MPI_Query_thread()
• MPI_Query_thread() returns the current level of thread support

- Has one integer argument: provided [in] as defined for MPI_Init_thread() 

• C syntax

int MPI_query_thread(int *provided);

• Fortran syntax

MPI_QUERY_THREAD(PROVIDED, IERROR)

INTEGER PROVIDED, IERROR

• Need to compare the output manually, i.e.

if (provided < requested) {

printf(“Not a high enough level of thread support!\n”);

MPI_Abort(MPI_COMM_WORLD,1)

…etc.

}

37



Master-only
• Advantages

- simple to write and maintain 

- clear separation between outer (MPI) and inner (OpenMP) levels of 

parallelism

- no concerns about synchronising threads before/after sending 

messages

• Disadvantages

- threads other than the master are idle during MPI calls

- all communicated data passes through the cache where the master 

thread is executing.

- inter-process and inter-thread communication do not overlap.

- only way to synchronise threads before and after message transfers is 

by parallel regions which have a relatively high overhead.

- packing/unpacking of derived datatypes is sequential.

38



Example

DO I=1,N

A(I) = B(I) + C(I)

END DO

CALL MPI_BSEND(A(N),1,.....)

CALL MPI_RECV(A(0),1,.....) 

DO I = 1,N

D(I) = A(I-1) + A(I) 

END DO 

!$omp parallel do

!$omp parallel do

Intra-node messages 

overlapped with inter-

node

Inter-thread communication 

occurs here

Implicit barrier added here

* nthreads

* nthreads

39



Funneled

• Advantages

- relatively simple to write and maintain 

- cheaper ways to synchronise threads before and after message 

transfers

- possible for other threads to compute while master is in an MPI call

• Disadvantages

- less clear separation between outer (MPI) and inner (OpenMP) levels of 

parallelism

- all communicated data still passes through the cache where the master 

thread is executing.

- inter-process and inter-thread communication still do not overlap.

40



OpenMP Funneled with overlapping (1)

Can’t using 

worksharing here!

41



OpenMP Funneled with overlapping (2)

Higher overheads and 

harder to synchronise 

between teams

42



Serialised

• Advantages

- easier for other threads to compute while one is in an MPI call

- can arrange for threads to communicate only their “own” data (i.e. 

the data they read and write). 

• Disadvantages

- getting harder to write/maintain

- more, smaller messages are sent, incurring additional latency 

overheads

- need to use tags or communicators to distinguish between 

messages from or to different threads in the same MPI process.  

43



Distinguishing between threads

• By default, a call to MPI_Recv by any thread in an MPI 

process will match an incoming message from the sender. 

• To distinguish between messages intended for different 

threads, we can use MPI tags

- if tags are already in use for other purposes, this gets messy

• Alternatively, different threads can use different MPI 

communicators

- OK for simple patterns, e.g. where thread N in one process only 

ever communicates with thread N in other processes

- more complex patterns also get messy

44



Multiple

• Advantages

- Messages from different threads can (in theory) overlap 

• many MPI implementations serialise them internally.

- Natural for threads to communicate only their “own” data

- Fewer concerns about synchronising threads (responsibility passed 

to the MPI library) 

• Disdavantages

- Hard to write/maintain

- Not all MPI implementations support this – loss of portability

- Most MPI implementations don’t perform well like this

• Thread safety implemented crudely using global locks.

45



Summary

• Think carefully before embarking on a mixed MPI + 

OpenMP solution

- why do you expect it to go faster?

• Remember Amdahl’s law!

- just because kernel goes faster doesn’t mean your whole code will!

• Code design may make this easier

- introducing OpenMP at a high level may be straightforward

- incremental loop-by-loop parallelisation may be challenging

• Even given a good hybrid MPI + OpenMP solution, 

achieving optimal performance can require a huge 

amount of messy experimentation

- often using system-specific flags and settings

46


