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Overview

• Motivation

• Potential advantages of MPI + OpenMP

• Problems with MPI + OpenMP

• Styles of MPI + OpenMP programming

- MPI’s thread interface
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Motivation

• With the ubiquity of multicore chips, almost all current CPU systems 

are clustered architectures

• Distributed memory systems, where each node consist of a shared 

memory multiprocessor (SMP).

• Single address space within each node, but separate nodes have 

separate address spaces.  
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Programming clusters

• How should we program such a machine? 

• Could use MPI across whole system

• Cannot (in general) use OpenMP/threads across whole 

system

- requires support for single address space

- this is possible in software, but inefficient

- also possible in hardware, but expensive

• Could use OpenMP/threads within a node and MPI 

between nodes

- is there any advantage to this? 
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Expectations

• In general, MPI + OpenMP does not improve performance 

(and may be worse!) in the regime where the MPI 

application is scaling well.

• Benefits come when MPI scalability (either in time or 

memory) starts to run out

• MPI + OpenMP may extend scalability to larger core 

counts 
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Typical performance curves

7



Potential advantages of MPI + OpenMP

• Reducing memory usage

• Exploiting additional levels of parallelism

• Reducing load imbalance

• Reducing communication costs
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Reducing memory usage

• Some MPI codes use a replicated data strategy
- all processes have a copy of a major data structure 

• Classical domain decomposition codes have replication in 
halos

• MPI internal message buffers can consume significant 
amounts of memory

• A pure MPI code needs one copy per process/core.

• A mixed code would only require one copy per node
- data structure can be shared by multiple threads within a process

- MPI buffers for intra-node messages no longer required

• Will be increasingly important
- amount of memory per core is not likely to increase in future
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Effect of domain size on halo storage

Local domain size Halos % of data in halos

503 = 125000 523 – 503 = 15608 11%

203 = 8000 223 – 203 = 2648 25%

103 = 1000 123 – 103 = 728 42%

• Typically, using more processors implies a smaller domain size per 

processor 

– unless the problem can genuinely weak scale

• Although the amount of halo data does decrease as the local domain size 

decreases, it eventually starts to occupy a significant amount fraction of 

the storage

– even worse with deep halos or >3 dimensions 
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Exploiting additional levels of parallelism

• Some MPI codes do not scale beyond a certain core 

count because they run out of of available parallelism at 

the top level.

• However, there may be additional lower levels of 

parallelism that can be exploited.

• In principle, this could also be done using MPI.

• In practice this can be hard

- The lower level parallelism may be hard to load balance, or have 

irregular (or runtime determined) communication patterns.

- May be hard to work around design decisions in the original MPI 

version.
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• It may, for practical reasons, be easier to exploit the 

additional level(s) of parallelism using OpenMP threads.

• Can take an incremental (e.g. loop by loop) approach to 

adding OpenMP

- maybe not performance optimal, but keeps development cost/time 

to a minimum. 

• Obviously OpenMP parallelism cannot extend beyond a 

single node, but this may be enough

- future systems seem likely to have more cores per nodes, rather 

than many more nodes
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Reducing load imbalance

• Load balancing between MPI processes can be hard

- need to transfer both computational tasks and data from overloaded to 

underloaded processes

- transferring small tasks may not be beneficial 

- having a global view of loads may not scale well

- may need to restrict to transferring loads only between neighbours

• Load balancing between threads is much easier

- only need to transfer tasks, not data

- overheads are lower, so fine grained balancing is possible 

- easier to have a global view

• For applications with load balance problems, keeping the 

number of MPI processes small can be an advantage
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Reducing communication costs

• It is natural to suppose that communicating data inside a 

node is faster between OpenMP threads than between 

MPI processes.

- no copying into buffers, no library call overheads

• True, but there are lots of caveats – see later. 

• This is rarely the bottleneck in MPI codes.

• In some cases, MPI codes actually communicate more 

data than is actually required

- where actual data dependencies may be irregular and/or data-

dependent

- makes implementation easier
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Collective communication

• In some circumstances, collective communications can be 

improved by using MPI + OpenMP

- e.g. AllReduce, AlltoAll

• In principle, the MPI implementation ought to be well 

optimised for clustered architectures, but this isn’t always 

the case.

- hard to do for AlltoAllv, for example

• Can be cases where MPI + OpenMP transfers less data

- e.g. AllReduce where every thread contributes to the sum, but only 

the master threads use the result
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Example

• ECMWF IFS weather forecasting code

• Semi-Lagrangian advection: require data from 

neighbouring grid cells only in an upwind direction.

• MPI solution – communicate all the data to neighbouring

processors that could possibly be needed.

• MPI + OpenMP solution – within a node, only read data 

from other threads’ grid point if it is actually required

- Significant reduction in communication costs 

- Significant reduction in memory usage
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IFS example
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Problems with MPI + OpenMP

• Development/maintenance costs

• Portability

• Libraries

• Performance pitfalls
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Development / maintenance costs

• In most cases, development and maintenance will be 

harder than for a pure MPI code.

• OpenMP programming is easier than MPI (in general), but 

it’s still parallel programming, and therefore hard!

- application developers need yet another skill set 

• OpenMP (as with all threaded programming) is subject to 

subtle race conditions and non-deterministic bugs

- correctness testing can be hard 
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Portability

• Both OpenMP and MPI are themselves highly portable 

(but not perfect). 

• Combined MPI/OpenMP is less so

- main issue is thread safety of MPI 

- if maximum thread safety is assumed, portability will be reduced

• Desirable to make sure code functions correctly (maybe 

with conditional compilation) as stand-alone MPI code 

(and as stand-alone OpenMP code?)
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Libraries

• If the pure MPI code uses a distributed-memory library, 

need to replace this with a hybrid version.

• If the pure MPI code uses a sequential library, need to 

replace this with either a threaded version called from the 

master thread, or a thread-safe version called inside 

parallel regions.

• If thread/hybrid library versions use something other than 

OpenMP threads internally, can get problems with 

oversubscription.

- Both the application and the library may create threads that might 

not idle nicely when not being used  
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Performance pitfalls

• Adding OpenMP may introduce additional overheads not 

present in the MPI code

- e.g. synchronisation, false sharing, sequential sections, NUMA effects).

• Adding OpenMP introduces a tunable parameter – the number 

of threads per MPI process

- optimal value depends on hardware, compiler, input data

- hard to guess the right value without experiments

• Placement of MPI processes and their associated OpenMP

threads within a node can have performance consequences.
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• An incremental, loop by loop approach to OpenMP is easy to 

do, but it can be hard to get sufficient parallel coverage

- just Amdahl’s law applied inside the node

P P P P PP P P P P PP

MPI MPI + OpenMP
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More pitfalls...
• Mixed implementation may require more synchronisation 

than pure OpenMP, if non-thread-safety of MPI is assumed.

• Implicit point-to-point synchronisation via messages may be 

replaced by (more expensive) barriers. 

- Loose thread to thread synchronisation is hard to do in OpenMP

• In the pure MPI code, the intra-node messages will often be 

naturally overlapped with inter-node messages

- harder to overlap inter-thread comms with inter-node messages

• OpenMP codes can suffer from false sharing

- cache-to-cache transfers caused by multiple threads accessing 

different words in the same cache block; MPI naturally avoids this.
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NUMA effects

• Nodes which have multiple sockets are NUMA

- each socket (CPU) has its own block of RAM.

• OS allocates virtual memory pages to physical memory

- has to choose a socket for every page

• Common policy (default in Linux) is first touch – allocate 

on socket where the first read/write comes from

- right thing for MPI

- worst possible for OpenMP if data initialisation is not parallelised

- all data goes onto one socket

• NUMA effects can limit the scalability of OpenMP

- it may be advantageous to run one MPI process per NUMA 

domain, rather than one MPI process per node.
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Process/thread placement

• On NUMA nodes need to make sure that:

- MPI processes are spread out across sockets

- OpenMP threads are on the same socket as their parent process

• Not all batch systems do a good job of this....

- can be hard to fix this as a user

- gets even more complicated if SMT (e.g. Hyperthreads) is used. 
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Styles of MPI + OpenMP programming

• Can identify 4 different styles of MPI + OpenMP

programming, depending on when/how OpenMP threads 

are permitted to make MPI library calls

• Each has its advantages and disadvantages

• MPI has a threading interface which allow the 

programmer to request and query the level of thread 

support
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The 4 styles
• Master-only

- all MPI communication takes place in the sequential part of the 

OpenMP program (no MPI in parallel regions)

• Funneled

- all MPI communication takes place through same (master) thread 

which can be inside parallel regions

• Serialized

- only one thread makes MPI calls at any one time

- distinguish sending/receiving threads via tags or communicators

- be very careful about race conditions on send/recv buffers etc.

• Multiple

- MPI communication simultaneously in more than one thread

- some MPI implementations don’t support this …and those which do 

mostly don’t perform well
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OpenMP Master-only

!$OMP parallel

work…

!$OMP end parallel

call MPI_Send(…)

!$OMP parallel

work…

!$OMP end parallel

#pragma omp parallel

{

work…

}

ierror=MPI_Send(…);

#pragma omp parallel

{

work… 

}

Fortran C
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OpenMP Funneled

!$OMP parallel

… work

!$OMP barrier

!$OMP master

call MPI_Send(…)

!$OMP end master

!$OMP barrier

.. work

!$OMP end parallel

#pragma omp parallel

{

… work

#pragma omp barrier

#pragma omp master

{  

ierror=MPI_Send(…);

}

#pragma omp barrier

… work

}

Fortran C
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OpenMP Serialized

!$OMP parallel

… work

!$OMP critical

call MPI_Send(…)

!$OMP end critical

… work

!$OMP end parallel

#pragma omp parallel

{

… work

#pragma omp critical

{  

ierror=MPI_Send(…);

}

… work

}

Fortran C
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OpenMP Multiple

!$OMP parallel

… work

call MPI_Send(…)

… work

!$OMP end parallel

#pragma omp parallel

{

… work 

ierror=MPI_Send(…);

… work

}

Fortran C
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Thread Safety

• Making MPI libraries thread-safe is difficult

- lock access to data structures

- multiple data structures: one per thread

- …

• Adds significant overheads

- which may hamper standard (single-threaded) codes

• MPI defines various classes of thread usage

- library can supply an appropriate implementation
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MPI_Init_thread
• MPI_Init_thread works in a similar way to MPI_Init by initialising MPI on the 

main thread.

• It has two integer arguments:

- Required ([in] Level of desired thread support )

- Provided ([out] Level of provided thread support

• C syntax

int MPI_Init_thread(int *argc, char *((*argv)[]), int

required, int *provided);

• Fortran syntax

MPI_INIT_THREAD(REQUIRED, PROVIDED, IERROR)

INTEGER REQUIRED, PROVIDED, IERROR
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MPI_Init_thread

• MPI_THREAD_SINGLE

- Only one thread will execute. 

• MPI_THREAD_FUNNELED

- The process may be multi-threaded, but only the main thread will make 

MPI calls (all MPI calls are funneled to the main thread). 

• MPI_THREAD_SERIALIZED

- The process may be multi-threaded, and multiple threads may make MPI 

calls, but only one at a time: MPI calls are not made concurrently from two 

distinct threads (all MPI calls are serialized). 

• MPI_THREAD_MULTIPLE

- Multiple threads may call MPI, with no restrictions.
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MPI_Init_thread

• These integer values are monotonic; i.e., 

- MPI_THREAD_SINGLE  <  MPI_THREAD_FUNNELED       < 

MPI_THREAD_SERIALIZED < MPI_THREAD_MULTIPLE

• Note that these values do not strictly map on to the 

four MPI/OpenMP Mixed-mode styles as they are more 

general (i.e. deal with Posix threads where we don’t 

have “parallel regions”, etc.)

- e.g. no distinction here between Master-only and Funneled

- see MPI standard for full details
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MPI_Query_thread()
• MPI_Query_thread() returns the current level of thread support

- Has one integer argument: provided [in] as defined for MPI_Init_thread() 

• C syntax

int MPI_query_thread(int *provided);

• Fortran syntax

MPI_QUERY_THREAD(PROVIDED, IERROR)

INTEGER PROVIDED, IERROR

• Need to compare the output manually, i.e.

if (provided < requested) {

printf(“Not a high enough level of thread support!\n”);

MPI_Abort(MPI_COMM_WORLD,1)

…etc.

}
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Master-only
• Advantages

- simple to write and maintain 

- clear separation between outer (MPI) and inner (OpenMP) levels of 

parallelism

- no concerns about synchronising threads before/after sending 

messages

• Disadvantages

- threads other than the master are idle during MPI calls

- all communicated data passes through the cache where the master 

thread is executing.

- inter-process and inter-thread communication do not overlap.

- only way to synchronise threads before and after message transfers is 

by parallel regions which have a relatively high overhead.

- packing/unpacking of derived datatypes is sequential.
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Example

DO I=1,N

A(I) = B(I) + C(I)

END DO

CALL MPI_BSEND(A(N),1,.....)

CALL MPI_RECV(A(0),1,.....) 

DO I = 1,N

D(I) = A(I-1) + A(I) 

END DO 

!$omp parallel do

!$omp parallel do

Intra-node messages 

overlapped with inter-

node

Inter-thread communication 

occurs here

Implicit barrier added here

* nthreads

* nthreads
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Funneled

• Advantages

- relatively simple to write and maintain 

- cheaper ways to synchronise threads before and after message 

transfers

- possible for other threads to compute while master is in an MPI call

• Disadvantages

- less clear separation between outer (MPI) and inner (OpenMP) levels of 

parallelism

- all communicated data still passes through the cache where the master 

thread is executing.

- inter-process and inter-thread communication still do not overlap.
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OpenMP Funneled with overlapping (1)

Can’t using 

worksharing here!
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OpenMP Funneled with overlapping (2)

Higher overheads and 

harder to synchronise 

between teams
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Serialised

• Advantages

- easier for other threads to compute while one is in an MPI call

- can arrange for threads to communicate only their “own” data (i.e. 

the data they read and write). 

• Disadvantages

- getting harder to write/maintain

- more, smaller messages are sent, incurring additional latency 

overheads

- need to use tags or communicators to distinguish between 

messages from or to different threads in the same MPI process.  
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Distinguishing between threads

• By default, a call to MPI_Recv by any thread in an MPI 

process will match an incoming message from the sender. 

• To distinguish between messages intended for different 

threads, we can use MPI tags

- if tags are already in use for other purposes, this gets messy

• Alternatively, different threads can use different MPI 

communicators

- OK for simple patterns, e.g. where thread N in one process only 

ever communicates with thread N in other processes

- more complex patterns also get messy
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Multiple

• Advantages

- Messages from different threads can (in theory) overlap 

• many MPI implementations serialise them internally.

- Natural for threads to communicate only their “own” data

- Fewer concerns about synchronising threads (responsibility passed 

to the MPI library) 

• Disdavantages

- Hard to write/maintain

- Not all MPI implementations support this – loss of portability

- Most MPI implementations don’t perform well like this

• Thread safety implemented crudely using global locks.
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Summary

• Think carefully before embarking on a mixed MPI + 

OpenMP solution

- why do you expect it to go faster?

• Remember Amdahl’s law!

- just because kernel goes faster doesn’t mean your whole code will!

• Code design may make this easier

- introducing OpenMP at a high level may be straightforward

- incremental loop-by-loop parallelisation may be challenging

• Even given a good hybrid MPI + OpenMP solution, 

achieving optimal performance can require a huge 

amount of messy experimentation

- often using system-specific flags and settings
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