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Exercise: Parallel Traffic Modelling
David Henty, EPCC

1 Introduction and Aims

The aim of this exercise is to take a simple example, the 1D traffic model as described in the lectures,
and parallelise it in various ways. Although this code is probably not sufficiently complicated to show
substantial performance differences, the idea is for you to experiment with different techniques in the
simple traffic model before implementing them in a real MPI application.

You will be given source code, implemented in both C and Fortran, that contains:

1. a working serial code;

2. a working MPI code;

3. a working OpenMP code;

4. Makefiles and template batch submission scripts for ARCHER.

The exercises below range from fairly basic to very advanced. Please start at whatever level you want to!

2 Instructions

Obtain the code as traffic-advmpi . tar from the course web page.

2.1 Verification

The way it is written the code should give exactly the same answer for both languages regardless of
whether it is serial or parallel. For a road of length 100000, the velocity at iteration 2000 should be
0.931989 (to 6 decimal places). If you get a different answer then your code is probably wrong!

You can experiment with increasing the length of the road — just change the value of nce11 near the top
of the main program. If you decide to use a road of a different length, you should re-run the serial code
to get a new baseline result. Note that the way the MPI code is implemented, it assumes that the length
of the road is an exact multiple of the number of processes.

The number of iterations is set quite low and you may wish to increase this when measuring performance
so that the parallel code still runs for a reasonable length of time (e.g. for around a second). Simply
multiply the value of maxiter by, say, a factor of 10:

maxiter = 200000000/ncell;
maxiter = maxiterx10;
printfreq = maxiter/10;



3 MPI exercises

These range from fairly basic to very advanced. Please attempt whatever ones you feel comfortable with.

1.

10.

11.

12.
13.

Run the MPI code on a range of process counts (e.g. 1, 2, 5, 10, 20, 40 and 50) and plot a graph of
the speedup against the number of processes.

Do the same with very short and very long roads and compare the performance results.

The global sum requires a parallel reduction MPI_Allreduce which is an expensive operation.
Modify the code so it only calls reductions when necessary; investigate the effect on performance.

Replace the MPI__Sendrecv call with separate calls to MPT_Send and MPI_Recv and check
that the code still runs correctly. Note that you have probably written a technically incorrect code
because MPI_Send could be implemented as a synchronous send.

. Replace the calltoMPI_Send with MPI_ Ssend to guarantee that it is implemented synchronously.

As it stands, your code will probably deadlock (see Section [3.1] for more exercises on this topic).

Fix the deadlock by arranging the processes into odd/even pairs where, in each pair, one process
sends first then receives and the other receives first then sends.

Solve the deadlock problem using non-blocking operations. There are a number of options:

(a) anon-blocking send (MPI_ISsend), ablockingreceive (MPI_Recv)andawait(MPI_Wait);
(b) anon-blocking receive, a blocking send and a wait;

(c) anon-blocking send, a non-blocking receive and multiple waits (e.g. MPT_Waitall).

When developing the non-blocking code, you should use synchronous send (i.e MPI_Ssend /
MPI_TIssend) as opposed to standard send (MPI_Send). This ensures an incorrect code is
guaranteed to deadlock; with standard sends, an incorrect code might just happen to run correctly
which is not desirable. Once working you can switch to MPI_Isend which should improve
performance.

. Putan MPI_Barrier at the end of every iteration. Although this is completely unnecessary,

many people do this kind of thing “just to be safe”. What is the effect on performance?

Implement the non-blocking halo exchange using persistent communications. In the case of run-
ning on 2 processes, where the up and down neighbour are both the same process, can you guaran-
tee that the sends and receives will match correctly?

Try to overlap some of the computation with communications, i.e. update the interior cells of the
road while waiting for the halo data to arrive.

Minimise the latency overhead by using deep halos, i.e. exchange more than one boundary element
and then do multiple iterations before the next halo swap. It is much easier to implement an explicit
depth first (e.g. 2 halo points) before attempting the general case of depth D.

Combine deep halos with overlapping communication and calculation.

Perform the halo swaps the neighbourhood collective operation MPI_Neighbor_alltoallwv.
You will need to create a 1D Cartesian topology using MPI_Cart_create with periodic bound-
ary conditions.



3.1 Non-periodic boundary conditions

The reason that the traffic model deadlocks with a naive implementation using synchronous sends is
because of the periodic boundary conditions: all processes are trying to send at the same time. With
non-periodic boundaries, however, processes at the extreme ends of the road will not need to send or
receive some of the data and the deadlock is broken.

Update the traffic model to use non-periodic boundaries:

1. Set the halo at the exit of the road (on the last process) to be zero so cars are always free to leave;

2. Each iteration, set the halo data at the entrance to the road (on the first process) to be 1 with
probability density, otherwise set to zero. This maintains the same density of traffic for the
whole simulation; see initroad () to see how to call the random number generator.

3. Run the code on one and many processes; does it give the same answer? Do you understand why?

4. Implement the halo swapping using blocking synchronous sends and receives (MPI_Ssend /
MP I_Recv); unlike the periodic case, the code should not deadlock.

5. Compare the performance with the version using MPI_Sendrecv andusingMPI_Send/MPI_Recv.
Although it works correctly, the synchronous version should be slower; do you understand why?

4 OpenMP exercises

1. Run the OpenMP code on a range of thread counts (e.g. 1, 2, 6, 12 and 24) and plot a graph of the
speedup against the number of threads.

2. Change the code so it only computes the total number of moves when absolutely necessary. How
does the impact on performance compare with the equivalent optimisation in MPI?

3. Before the first call to initroad (), zero both the o1droad and newroad arrays using a par-
allel loop. With a very long road (e.g. at least ten million cells), what is the effect on performance
for small and large numbers of threads? Do you understand what is happening here?

4. Minimise the overhead of creating parallel regions by enclosing the entire iteration loop with a
single parallel region. What is the effect on performance? Note that this is very challenging, e.g.
you will now need to implement updateroad () using orphaned directives.

S Hybrid MPI/OpenMP

It should be quite simple to introduce OpenMP directives into the MPI code in exactly the same way as
the serial code.

1. Set the length of the road to include a factor of 24 (e.g. use 120000) so you have more freedom to
vary the number of processes.

2. Compare performance for different numbers of processes or threads on the same number of cores.
For example, on 2 nodes with a total of 48 cores you could use: 48 processes (P) with 1 thread per
process (T); (P =24, T =2); (P =12,T =4);...; (P =2,T = 24).



6 MPI Shared Memory

The exercise is to implement RMA calls in a real MPI program. Perhaps the most interesting approach
would be to work on the CFD code. but the exercise here is based on the simpler traffic model.

You are provided with a working MPI program and the ultimate aim is to implement MPI shared memory
so all communication on a node is done with direct reads and writes, and you only use send and receive
when going between different nodes.

I have also provided a working version (traffic-rma) that uses MPI_Put for all point-to-point communi-
cations which you may find useful.

I would suggest the following approach:

e compare the MPI and MPI-RMA versions and check that you understand how the RMA version
works;

e change the RMA version to use MPI_Get instead of MPI_Put;

e introduce shared memory windows so that the program runs on a single node using reads and writes
to shared arrays;

e extend the program so that it uses point-to-point send and receive between nodes.

There is a slight subtlety for Fortran programmers as the memory allocation routine returns a C pointer
and you need to convince the compiler that it’s really a proper Fortran array.

The way to do this is:
use iso_c_binding, only: c_ptr, c_f_pointer
integer, pointer, dimension(:) :: sharedarray
type (c_ptr) :: baseptr
! We ultimately end up with a normal Fortran array "sharedarray" but need "baseptr" a
call MPI_Win_allocate_shared(winsize, disp_unit, MPI_INFO_NULL, nodecomm, baseptr, no
! convert baseptr to a Fortran array of size "n" (need to convert integer "n" to arra
call c_f pointer (baseptr, sharedarray, [n])

! Now sharedarray is a normal Fortran integer array of size "n", indexed from 1 to n

! If you want it to be indexed from 0 you will need to play around with more array po:
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