CPCC

Message-Passing Programming
Cellular Automaton Exercise

Aim

The aim of this exercise is to design serial and parallel algorithms to implement a simple cellular automa-
ton which attempts to model traffic flow.

The Model

The simulation box is a line @V cells numbered, 2, ..., N —1, N (the road) which can each only have
two values: 1 if a car is present on that section of road; O if it is empty. We will denote the value of cell
number: at timet by R*(i).

Theupdate ruledor each time step are very simple:

e if the space in front of a car is empty then it moves forward one cell;
e otherwise it stays where it is.

Remember that we proceed through a series of iterations where the values of the cellg-atitidepend
entirely on the values at time In other words you should be able to apply the update rules to the cells at
time¢ in any order and you should still get the same valuestat.

After each iteartion we compute tla@erage velocityf the cars. This is calculated as the number of cars
that move in an iteration divided by the total number of cars, and is a value between 0 and 1.

We useperiodic boundary conditionge when a car moves off the right-hand-side of the road it reappears

on the left, and vice-versa (this is the same as saying we are simulating a roundabout rather than a straight
section of road). To do this, we identifi#’(0) (the cell to the left of cell number 1) witf®!(N) and

RY(N + 1) (the cell to the right of cell numbe¥) with Rt(1).

1 Rules for Cellular Automaton

It should be fairly clear that, when we update to a new timestep, the new kfugi) depends on its
old value at timef, and also on the old values of the neighbours. In other waktis! (i) depends on the
three values®' (i — 1), R'(i) andR' (i + 1).

You should fill in Table 1 and Table 2 to get the explicit form of the update rules for this cellular automa-
ton. For convenience, we have split the 8 possible cases into two tables, one for an initially empty cell
R!(i) = 0, and the other for a full celkR?(i) = 1. Writing things out in this explicit form you can see

that there are in fact 256 possible 1D cellular automata (each corresponding to different update rules),
but very few of them are in fact of any interest!

Having written the update rules, you should now write a piece of pseudo-code that implements them for
a road of lengthV. The easiest approach is to have two arrays, one corresponding to the old values and
one to the new values, and simply to loop through the elements and update the new array based on the
old one. You should also consider how best to implement the periodic boundary conditions.

1



R'(i—1)=0| R'(i—1)=1

R'(i+1)=0
R'(i+1)=1

Table 1: Values o1 (i) if R'(i) =0

R'(i—1)=0| R'(i—1)=1

R'(i+1)=0
R'(i+1)=1

Table 2: Value ofR*+1 (i) if R'(i) =1

2 Parallelisation

Examine the pseudo-code that you have just written and consider how you would split up the calculation
among multiple processors. Points to consider include:

e What parts of the calculation could be done independently and what parts would require some form
of cooperation (eg synchronisation or communication)?

e What is the best way to handle any communications in your parallel code?

e Is it possible to implement both the boundary conditions and the communications using the same
basic approach?

Remember also that you not only have to update the cars at each generation, but you also have to compute
the total number of cars that move in order to calculate the velocity.

3 Message Passing Implementation

How would you implement your parallel scheme using a message-passing programming model on a
distributed-memory parallel machine? Points to consider include:

e How would you divide the data amongst the different processes?
e When is communications required?

e How would you calculate the velocity at each timestep?

Write some pseudo-code to illustrate your solution, assuming that you have access to simple routines to
send and receive data between processes. You should consider two cases:

1. sending data is doresynchronousljike sending a letter;

2. sending data is dorsynchronouslyike making a phone call.

Be careful to avoid deadlock, particularly in the second case.

If you prefer to think of an analogy, imagine that you and a friend want to simulate the traffic model by
hand on the blackboards in your offices. You decide to split the calculation between you, and luckily
your offices are relatively nearby. Unfortunately, the sound insulation is very good and you don't have a
phone, so the only way to communicate is to go and speak to each other. You each can also only work
in your own office as the blackboards are only large enough to hold half of the road. How would you
organise the calculation? Try and come up with a scheme that minimises the number of times you have
to get up and leave your office. How would you generalise your algorithm for three, four or eight people?



