
C O M P U T E | S T O R E | A N A L Y Z E

Cray I/O Software Enhancements

Tom Edwards

tedwards@cray.com

18-Mar-18
1

mailto:tedwards@cray.com

C O M P U T E | S T O R E | A N A L Y Z E

Overview

18-Mar-18
2

● The Cray Linux Environment and parallel libraries provide
full support for common I/O standards.
● Serial POSIX I/O

● Parallel MPI I/O
● 3rd part-libraries built on top of MPI I/O

● HDF5, NetCDF4

● Cray versions provide many enhancements over generic
implementations that integrate directly with Cray XC30
and Cray Sonexion hardware.
● Cray MPI-IO collective buffering, aggregation and data sieving.

● Automatic buffering and direct I/O for Posix transfers via IOBUF.

● This talk explains how to get the best from the enhanced
capabilities of the Cray software stack.

C O M P U T E | S T O R E | A N A L Y Z E

Cray MPI-IO Layer

18-Mar-18
3

Data Aggregation and Sieving

C O M P U T E | S T O R E | A N A L Y Z E

MPI I/O

18-Mar-18
4

● The MPI-2.0 standard provides a standardised interface for
reading and writing data to disk in parallel. Commonly
referred to as MPI I/O

● Full integration with other parts of the MPI standard allows
users to use derived type to complete complex tasks with
relative ease.

● Can automatically handle portability like byte-ordering and
native and standardised data formats.

● Available as part of the cray-mpich library on XC30,
commonly referred to as Cray MPI-IO.
● Fully optimised and integrated with underlying Lustre file-system.

C O M P U T E | S T O R E | A N A L Y Z E

Step 1: MPI-IO Hints

18-Mar-18
5

The MPI I/O interface provides a mechanism for providing
additional information about how to the MPI-IO layer should
access files.

These are controlled via MPI-IO HINTS, either via calls in the
MPI API or passed via an environment variable. All hints can
be set on a file-by-file basis.

On the Cray XC30 the first most useful are:
● striping_factor – Number of lustre stripes

● striping_unit – Size of lustre stripes in bytes

These set the file’s Lustre properties when it is created by
an MPI-IO API call.

* Note these require MPICH_MPIIO_CB_ALIGN to be set to its default value of 2.

C O M P U T E | S T O R E | A N A L Y Z E

Example settings Lustre hints in C

18-Mar-18
6

Hints can be added to MPI calls via an Info unit when the
file is opened using the MPI I/O API. Below is an example in
C

#include <mpi.h>
#include <stdio.h>

int factor = 4; // The number of stripes
int unit = 4; // The stripe size in megabytes

sprintf(factor_string, “%d”, factor);
// Multiple unit into bytes from megabytes
sprintf(unit_string, “%d”, unit * 1024 * 1024);

MPI_Info_set(info, “striping_factor”, factor_string);
MPI_Info_set(info, “striping_unit”, unit_string);

MPI_File_open(MPI_COMM_WORLD, filename, MPI_MODE_CREATE |
 MPI_MODE_RDWR, info, &fh);

C O M P U T E | S T O R E | A N A L Y Z E

Setting hints via environment variables

18-Mar-18
7

Alternatively, hints can be passed externally via an
environment variable, MPICH_MPIIO_HINTS.

Hints can be applied to all files, specific files, or pattern
files, e.g.

Set all MPI-IO files to 4 x 4m stripes
MPICH_MPIIO_HINTS=“*:striping_factor=4:striping_unit=4194304”

Set all .dat files to 8 x 1m stripes
MPICH_MPIIO_HINTS=“*.dat:striping_factor=8:striping_unit=1048576”

Set default to 4 x 4m and all *.dat files to 8 x 1
MPICH_MPIIO_HINTS=“*:striping_factor=4:striping_unit=4194304, \
 =*.dat:striping_factor=8:striping_unit=1048576”

C O M P U T E | S T O R E | A N A L Y Z E

Displaying hints

18-Mar-18
8

The MPI-IO library can print out the “hint” values that are
being using by each file when it is opened. This is controlled
by setting the environment variable:

export MPICH_MPIIO_HINT_DISPLAY=1

The reported is generated by the PE with rank 0 in the
relevant communicator and is printed to stderr.

PE 0: MPICH/MPIIO environment settings:
PE 0: MPICH_MPIIO_HINTS_DISPLAY = 1
PE 0: MPICH_MPIIO_HINTS = NULL
PE 0: MPICH_MPIIO_ABORT_ON_RW_ERROR = disable
PE 0: MPICH_MPIIO_CB_ALIGN = 2
PE 0: MPIIO hints for file1:
…
 direct_io = false
 aggregator_placement_stride = -1
…

C O M P U T E | S T O R E | A N A L Y Z E

Collective vs independent calls

18-Mar-18
9

● Opening a file via MPI I/O is a collective operation that
must be performed by all members of a supplied
communicator.

● However, many individual file operations have two
versions:
● A collective version which must be performed by all members of the

supplied communicator

● An independent version which can be performed ad-hoc by any
processor at any time. This is akin to standard POSIX I/O, however
includes MPI data handling syntactic sugar.

● It is only during collective calls that the MPI-IO library can
perform required optimisations. Independent I/O is usually
no more (or less) efficient than POSIX equivalents.

C O M P U T E | S T O R E | A N A L Y Z E

Collective Buffering & Data Sieving

18-Mar-18
10

C O M P U T E | S T O R E | A N A L Y Z E

Writing a simple data structure to disk

18-Mar-18
11

Consider a simple 1D
parallel decomposition.

MPI I/O allows parallel
data structures
distributed across
ranks to be stored in a
single with a simple
offset mapping.

However exactly
matching this
distribution to Lustre’s
stripe alignment is
difficult to achieve.

Rank 2

Data

Rank 3

Data

Rank 0

Data

Rank 1

Data

0

1

2

0

1

2

0

1

OST

0

OST

1

OST

2

Lustre Stripe Boundaries

Header data

C O M P U T E | S T O R E | A N A L Y Z E

Recap: Optimising Lustre Performance

12

Lustre’s performance comes
from Parallelism, with many
writers/readers to/from many
Object Storage Targets
(OSTs).

MPI I/O offers good
parallelism, with each rank
able potentially writing it’s
own data into a file

However, for large jobs
#writers >> #OSTs, and each
rank may write to more than 1
OST. This can cause Lustre
lock contention and that
slows access

S
in

g
le

 F
ile

Potential

Lock

Contention

Points

C O M P U T E | S T O R E | A N A L Y Z E

Collective Buffering and Lustre Stripe
Alignment

13

To limit the number of writers
the MPI-IO library will assign
and automatically redistribute
data to a subset of “collective
buffering” or “aggregator”
nodes during a collective file
operation.

By default, the number of
“collective buffering” nodes
will be the same as the lustre
striping factor to get
maximum benefit of Lustre
Stripe Alignment.

Each collective buffer node
will attempt to only write data
to a single Lustre OST.

S
in

g
le

 F
ile

Collective

Buffering

Nodes

C O M P U T E | S T O R E | A N A L Y Z E

R
a
n
k
 *2

R

a
n
k
 *1

R

a
n
k
 *0

Automatic Lustre stripe alignment

18-Mar-18
14

Rank 2

Data

Rank 3

Data

Rank 0

Data

Rank 1

Data

0

1

2

0

1

2

0

1

OST

0

OST

1

OST

2

Collective nodes

0

1

2

0

1

2

0

1

C O M P U T E | S T O R E | A N A L Y Z E

Writing structured data to disk

18-Mar-18
15

However, switching to
an even slightly more
complex
decomposition, like a
2D Cartesian, results in
ranks having to
perform non-
contiguous file
operations.

Rank 2

Data

Rank 3

Data

Rank 0

Data

Rank 1

Data

0

1

2

0

1

2

0

OST

0

OST

1

OST

2

C O M P U T E | S T O R E | A N A L Y Z E

Data Sieving

18-Mar-18
16

● “Read/Write Gaps” occur when the data is not accessed
contiguously from the file.

● This limits the total bandwidth rate as each access
requires separate calls and may cause additional seek
time on HDD storage.

● Overall performance can be improved by minimising the
number of read/write gaps.

● The Cray MPI-IO library will attempt to use data sieving to
automatically combine multiple smaller operations into
fewer larger operations.

C O M P U T E | S T O R E | A N A L Y Z E

Strided file access

18-Mar-18
17

Rank 2

Data

Focusing on a rank we
can see that it will
potentially end up
writing strided data to
each OST.

This is likely to incur
penalties due to extent
locking on each of the
OSTs.

It also prevents optimal
performance of HDD
block devices writing
contiguous blocks of
data

Rank 3

Data

Rank 0

Data

Rank 1

Data

0

1

2

0

1

2

0

OST

0

OST

1

OST

2

C O M P U T E | S T O R E | A N A L Y Z E

R
a
n
k
 *0

R

a
n
k
 *2

R

a
n
k
 *1

Writing structured data to disk

18-Mar-18
18

Rank 2

Data

Rank 3

Data

Rank 0

Data

Rank 1

Data

0

1

2

0

1

2

0

OST

0

OST

1

OST

2

0

0

0

1

1

2

2

Data held in

local 2D

Decomposition

MPI-IO

translates

to 1D

MPI-IO transposes

data to optimal

Lustre layout
Storing

to OSTs

C O M P U T E | S T O R E | A N A L Y Z E

R
a
n
k
 *0

R

a
n
k
 *2

R

a
n
k
 *1

Data Sieving

18-Mar-18
19

Rank 2

Data

Rank 3

Data

Rank 0

Data

Rank 1

Data

0

1

2

0

1

2

0

OST

0

OST

1

OST

2

0

0

0

1

1

2

2

Data held in

local 2D

Decomposition

MPI-IO

translates

to 1D

Data Sieving combines

smaller operations into

larger contiguous ones
Storing

to OSTs

C O M P U T E | S T O R E | A N A L Y Z E

Managing Collective Buffering

18-Mar-18
20

● The Cray MPI-IO library will automatically perform
collective buffering of collective MPI-IO calls. There are
two algorithms controlled by the value of
MPICH_MPIIO_CB_ALIGN=[0|2]
● 0 : distribute data into equally across all aggregators regardless of

Lustre strip settings (inefficient if data in a single stripe or small
number of stripes)

● 2 (default): Divides data into Lustre stripe-sized pieces and assigns
them to collective buffering nodes such that each node always and
exclusively accesses the same set of stripes.

● The default behaviour (MPICH_MPIIO_CB_ALIGN=2) will:
● Automatically set the number of aggregators to the number of stripes

● Attempt to place each aggregator on it’s own node

● So in most cases it is only necessary to change the Lustre
stripe settings to optimise performance

C O M P U T E | S T O R E | A N A L Y Z E

Manually configuring collective buffer

18-Mar-18
21

● It is possible to specify specific values for collective
buffering. This is done by setting
MPICH_MPIIO_CB_ALIGN=0

● The primary tunable values of collective buffering are:
● cb_buffers_size – The size of each buffer (default 16MB)

● cb_nodes – The number of aggregators (default # of XC30 nodes)

● The are passed as hints to the MPI-IO library

● Other variables are explained in man mpi

● Our experiences is that the default aligned algorithm
achieves best performance in most circumstances.

C O M P U T E | S T O R E | A N A L Y Z E

Understanding MPI-IO Stats

18-Mar-18
22

+--+
| MPIIO write access patterns for file1
| independent writes = 0
| collective writes = 24
| system writes = 4916
| stripe sized writes = 4915
| total bytes for writes = 25769803776 = 24576 MiB = 24 GiB
| ave system write size = 5242026
| number of write gaps = 0
| ave write gap size = NA
+--+

The MPI library can provide stats on how many reads and writes were
performed in system sized gaps. Adding:
export MPICH_MPIIO_STATS=1
To run time environment variables will generate summary output on
each PE.

C O M P U T E | S T O R E | A N A L Y Z E

In more detail

18-Mar-18
23

● Independent writes – the number of writes performed by
independent call to the MPI-IO library

● Collective writes – the number of writes performed in
collective MPI-IO calls.

● System writes – the number of POSIX write operations the
MPI-IO translated the calls into

● Total bytes for writes – The amount of data written to the
file

● Avg system write size – The average size of each POSIX
write operation

● Number of write gaps – the number of gaps/seeks
between POSIX write operations

● Avg write gap size – the average size of jumps/seek
operations.

C O M P U T E | S T O R E | A N A L Y Z E

Recognising Poor Performance

18-Mar-18
24

This is a simple example for 3D decomposed array.
Independent MPI-IO writes are used in place of collectives.

0.005 GiB/s

+--+
| MPIIO write access patterns for unstriped/mpiionative.dat
| independent writes = 64
| collective writes = 0
| system writes = 1048576
| stripe sized writes = 0
| total bytes for writes = 1073741824 = 1024 MiB = 1 GiB
| ave system write size = 1024
| number of write gaps = 1048512
| ave write gap size = 15264
+--+

No Collective writes

Large numbers of system writes

Ave system write size is small

Large number of write gaps

No stripe sized writes

C O M P U T E | S T O R E | A N A L Y Z E

Recognising Good Performance

18-Mar-18
25

This same simple example for 3D decomposed array. Now
using collective MPI-IO writes:

1.41 GiB/s

+--+
| MPIIO write access patterns for striped/mpiionative.dat
| independent writes = 0
| collective writes = 64
| system writes = 1024
| stripe sized writes = 1024
| total bytes for writes = 1073741824 = 1024 MiB = 1 GiB
| ave system write size = 1048576
| number of write gaps = 0
| ave write gap size = NA
+--+

No Collective writes

Ave system ~= stripe size

No write gaps

High % of stripe sized writes

C O M P U T E | S T O R E | A N A L Y Z E

Cray-mpich 7 features

18-Mar-18
26

The cray-mpich/7+ library introduces an additional
diagnostic tool:

export MPICH_MPIIO_AGGREGATOR_PLACEMENT_DISPLAY=1

 Aggregator Placement for /lus/scratch/myfile

 RankReorderMethod=3 AggPlacementStride=-1

 AGG Rank nid

 ---- ------ --------

 0 0 nid00578

 1 4 nid00579

 2 1 nid00606

 3 5 nid00607

 4 2 nid00578

 5 6 nid00579

 6 3 nid00606

 7 7 nid00607

C O M P U T E | S T O R E | A N A L Y Z E

Controlling IO Buffering

In traditional serial IO

C O M P U T E | S T O R E | A N A L Y Z E

IO Buffering

● By default the underlying Linux OS tries to automatically
buffer all IO
● The user does not have any control over the buffering process.

● The OS tries to use as much of the free memory as possible as buffers
● There are limits that can be set in place by the admins of the system

● These are not controlled by the user

● Users can request to skip OS buffering by using ‘direct IO’, however
this requires modifying the open system call (O_DIRECT)

● Cray offers a more sophisticated IO buffer method named
IOBUF
● Available via a module in the Cray PE and controlled via a runtime

Environment Variable

● User can control buffer sizes for each file

● Will automatically pre-fetch data

● Provides summary statistics

● Man page available

28

C O M P U T E | S T O R E | A N A L Y Z E

IOBUF

29

● IOBUF is a library that intercepts standard I/O (stdio) and

enables asynchronous caching and prefetching of

sequential file access

● Should not be used for

● Hybrid programs that do I/O within a parallel region (not thread-safe)

● Many processes accessing the same file in a coordinated fashion

(MPI_File_write/read_all)

● No need to modify the source code but just

● Load the module iobuf

● Relink your application

● Set export IOBUF_PARAMS='*:verbose' in the batch script

● See the iobuf(3) manpage

C O M P U T E | S T O R E | A N A L Y Z E

IOBUF STATS output

18-Mar-18
30

● Each file accessed on each PE will print a summary when
closed.

● Users set a “buffer size” (default 1MB), transactions that
are smaller are cached into one of the buffers

● Larger transactions are performed directly, bypassing the
buffers.

IOBUF parameters:
file="defstriped/serial.dat":size=1048576:count=4:vbuffer_count=4096:prefetch=1
:verbose
PE 0: File "defstriped/serial.dat"
 Calls Seconds Megabytes Megabytes/sec Avg Size
Write 2048 0.580566 402.653184 693.552615 196608
Open 1 0.001288
Close 1 0.006056
Buffer Write 384 0.533518 402.653184 754.713968 1048576
I/O Wait 384 0.530056 402.653184 759.643408
Buffers used 4 (4 MB)
Preflushes 384

C O M P U T E | S T O R E | A N A L Y Z E

IOBUF configuration

18-Mar-18
31

● Users can increase the size of buffers (size=#[KMG])

● They can also add more buffers (count=#) this allows for
more access points

● Data is automatically pre-fetched. More buffers can be pre-
fetched (count=#) or disabled completely (count=0)

● Data can also be written “direct”, i.e. bypassing the OS’s
internal buffering process.

● Settings controlled on a file by file basis or via pattern
matching, e.g:

export IOBUF_PARAMS=“input.dat:count=8:size=64M:direct2,\
 out*.dat:size=1M:count=4:prefetch=0”

C O M P U T E | S T O R E | A N A L Y Z E

Conclusions

18-Mar-18
32

● The Cray XC30 has a fully featured and optimised MPI I/O
stack available to users – If all possible – Use it!
● It is fully integrated with the underlying Lustre file system

● Also integrated with supplied HDF5 and NetCDF4 libraries.

● Application I/O should be parallel with multiple writers to
achieve best performance.

● Lustre settings should match application parallelism
● (e.g. file-per-process vs MPI-IO collectives)

● Lustre settings have biggest impact on perfromance.

● MPI-IO provides nice way to abstract complicated file-
access patterns
● But implementations can only optimise parallel collective operations in

practice!

