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Distributed Array – Introduction

• Distributed Array is an Implementation Strategy that 

comes under the Data Structures sub-group. 

• Arrays often need to be partitioned between multiple UEs.

• How can this be done so that the program is both 

readable and efficient?
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Distributed Array – Introduction

• Large arrays are fundamental data structures in scientific 

computing problems.

• Most systems have memory access times that vary 

substantially depending on which UE is accessing a 

particular array element.

- even if that system supports a global address space

- the challenge is to ensure that data elements are “nearby” at the 

right times during the computation

• For distributed systems, must explicitly distribute data.

• For NUMA systems, no need to split the data, but it’s still 

desirable to have the right memory “nearby”. 
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Distributed Array – Forces

• Load Balance

• Effective Memory Management

- make good use of the cache

• Clarity of Solution

- aim to have a clear mapping between local and global arrays
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Distributed Array – Solution
• The “solution” is the mapping between local and global arrays.

• Mapping an M×N matrix to P UEs...

- 1D block: element ai,j is assigned to pk where

- 1D block-cyclic 

• Mapping an M×N matrix to P×Q UEs...

- 2D block: element ai,j is assigned to pk,l where

- 2D block-cyclic
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𝑘 = 𝑗 % 𝑃

𝑘 = ہ Τ𝑗 ڿ Τ𝑀 𝑃

𝑙 = ہ Τ𝑗 ڿ Τ𝑀 𝑄

𝑘 = ہ Τ𝑖 ڿ Τ𝑁 𝑃 % 𝑃

𝑘 = ہ Τ𝑖 ڿ Τ𝑁 𝑃

𝑙 = ہ Τ𝑗 ڿ Τ𝑀 𝑄 %𝑄

ڿ ⋯ ≡ 𝑐𝑒𝑖𝑙𝑖𝑛𝑔 ⋯

ہ ⋯ ≡ 𝑓𝑙𝑜𝑜𝑟 ⋯



An 8×8 Array
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a0,0 a0,1 a0,2 a0,3 a0,4 a0,5 a0,6 a0,7

a1,0 a1,1 a1,2 a1,3 a1,4 a1,5 a1,6 a1,7

a2,0 a2,1 a2,2 a2,3 a2,4 a2,5 a2,6 a2,7

a3,0 a3,1 a3,2 a3,3 a3,4 a3,5 a3,6 a3,7

a4,0 a4,1 a4,2 a4,3 a4,4 a4,5 a4,6 a4,7

a5,0 a5,1 a5,2 a5,3 a5,4 a5,5 a5,6 a5,7

a6,0 a6,1 a6,2 a6,3 a6,4 a6,5 a6,6 a6,7

a7,0 a7,1 a7,2 a7,3 a7,4 a7,5 a7,6 a7,7
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a0,0 a0,1 a0,2 a0,3 a0,4 a0,5 a0,6 a0,7

a1,0 a1,1 a1,2 a1,3 a1,4 a1,5 a1,6 a1,7

a2,0 a2,1 a2,2 a2,3 a2,4 a2,5 a2,6 a2,7

a3,0 a3,1 a3,2 a3,3 a3,4 a3,5 a3,6 a3,7

a4,0 a4,1 a4,2 a4,3 a4,4 a4,5 a4,6 a4,7

a5,0 a5,1 a5,2 a5,3 a5,4 a5,5 a5,6 a5,7

a6,0 a6,1 a6,2 a6,3 a6,4 a6,5 a6,6 a6,7

a7,0 a7,1 a7,2 a7,3 a7,4 a7,5 a7,6 a7,7

1D Block with P = 4

P0 P1 P2 P3

ai,j assigned to pk

𝑘 = ہ Τ𝑗 ڿ Τ𝑀 𝑃

𝑀 = 8

𝑗 = 0. . 7
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a0,0 a0,1 a0,2 a0,3 a0,4 a0,5 a0,6 a0,7

a1,0 a1,1 a1,2 a1,3 a1,4 a1,5 a1,6 a1,7

a2,0 a2,1 a2,2 a2,3 a2,4 a2,5 a2,6 a2,7

a3,0 a3,1 a3,2 a3,3 a3,4 a3,5 a3,6 a3,7

a4,0 a4,1 a4,2 a4,3 a4,4 a4,5 a4,6 a4,7

a5,0 a5,1 a5,2 a5,3 a5,4 a5,5 a5,6 a5,7

a6,0 a6,1 a6,2 a6,3 a6,4 a6,5 a6,6 a6,7

a7,0 a7,1 a7,2 a7,3 a7,4 a7,5 a7,6 a7,7

P0 P1 P2 P3 P0 P1 P2 P3

1D Block-cyclic with P = 4

ai,j assigned to pk

𝑘 = 𝑗 % 𝑃

𝑗 = 0. . 7
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a0,0 a0,1 a0,2 a0,3 a0,4 a0,5 a0,6 a0,7

a1,0 a1,1 a1,2 a1,3 a1,4 a1,5 a1,6 a1,7

a2,0 a2,1 a2,2 a2,3 a2,4 a2,5 a2,6 a2,7

a3,0 a3,1 a3,2 a3,3 a3,4 a3,5 a3,6 a3,7

a4,0 a4,1 a4,2 a4,3 a4,4 a4,5 a4,6 a4,7

a5,0 a5,1 a5,2 a5,3 a5,4 a5,5 a5,6 a5,7

a6,0 a6,1 a6,2 a6,3 a6,4 a6,5 a6,6 a6,7

a7,0 a7,1 a7,2 a7,3 a7,4 a7,5 a7,6 a7,7

2D Block with P×Q = 2×2

ai,j assigned to pk,l

𝑀 = 𝑁 = 8

𝑙 = ہ Τ𝑗 ڿ Τ𝑀 𝑄

𝑘 = ہ Τ𝑖 ڿ Τ𝑁 𝑃

P0,0 P0,1

P1,0 P1,1

𝑖, 𝑗 = 0. . 7
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a0,0 a0,1 a0,2 a0,3 a0,4 a0,5 a0,6 a0,7

a1,0 a1,1 a1,2 a1,3 a1,4 a1,5 a1,6 a1,7

a2,0 a2,1 a2,2 a2,3 a2,4 a2,5 a2,6 a2,7

a3,0 a3,1 a3,2 a3,3 a3,4 a3,5 a3,6 a3,7

a4,0 a4,1 a4,2 a4,3 a4,4 a4,5 a4,6 a4,7

a5,0 a5,1 a5,2 a5,3 a5,4 a5,5 a5,6 a5,7

a6,0 a6,1 a6,2 a6,3 a6,4 a6,5 a6,6 a6,7

a7,0 a7,1 a7,2 a7,3 a7,4 a7,5 a7,6 a7,7

2D Block-cyclic with P×Q = 2×2

ai,j assigned to pk,l

𝑖, 𝑗 = 0. . 7

𝑀 = 𝑁 = 8

𝑘 = ہ Τ𝑖 ڿ Τ𝑁 𝑃𝑄 % 𝑃

𝑙 = ہ Τ𝑗 ڿ Τ𝑀 𝑃𝑄 % 𝑄

P0,0 P0,1

P1,0 P1,1



Distributed Array – Comments

• Complex mappings between co-ordinate systems are often 

best-expressed by use of macros.

- aids readability and harder to make mistakes when writing

- no performance hit

• ScaLAPACK is an example of a library that is based 

around the 2D block-cyclic array distribution

- good for load balance and memory locality

• http://netlib.org/scalapack/slug/node75.html

• Distributed Array is often used with the Geometric 

Decomposition and SPMD patterns.
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Shared Data – Introduction
• Shared Data is an Implementation Strategy (or Supporting 

Structure).

Program structures

SPMD

Master/Worker

Loop parallelism

Fork/Join

Active messaging

Vectorisation

Shared data

Shared queue

Distributed Array

Data structures



Shared Data – Introduction

• How does one explicitly manage shared data for a set of 

parallel tasks?

• Some parallel algorithm patterns handle shared data by 

extracting it from the task.

- Replication & Reduction with Task Parallelism

- Halo-swapping with Geometric Decomposition

• The Shared Data pattern is required when data cannot be  

extracted from the tasks.

- such as when dependencies are neither removable or separable 



Shared Data – Introduction

• Some common attributes for problems that need the 

Shared Data pattern are...

- at least one data structure is accessed by multiple tasks in the 

course of the program’s execution

- at least one task modifies the shared data structure, and

- the tasks potentially need to use the modified value during the 

concurrent computation



Shared Data – Forces

• The results of the computation must be correct for any 

ordering of the tasks that could occur during the 

computation.

• Explicitly managing shared data can incur parallel overhead, 

which must be kept small if the program is to run efficiently.

• Techniques for managing shared data can limit the number 

of tasks that can run concurrently, impacting scalability.

• If the constructs used to manage shared data are not easy 

to understand, the program will be harder to maintain.



Shared Data – Solution

• Ensure this pattern is needed.

- is there an approach that matches one of the other algorithm 

strategy patterns without the need for shared data?

• Make use of Abstract Data Types (ADTs).

• Implement appropriate concurrency-control protocol.

- One-at-a-time execution

- Noninterfering sets of operations

- Readers/Writers

- Reducing the size of the critical section

- Nested locks

- Application-specific semantic relaxation



Shared Data – Solution continued

• Review other considerations.

- Memory synchronisation

- Task scheduling



Using an Abstract Data Type

• Consider the shared data type as an ADT with a fixed set 

of (possibly complex) operations on the data.

- put, get, remove, isEmpty, getSize

• Each task will typically perform a sequence of these 

operations, along with operations on other (non-shared) 

data.

• Operations should have always leave the data in a 

consistent and meaningful state.

• Implementation of individual operations should be such 

that results of lower-level actions should not be visible to 

other tasks/Ues.



Concurrency Control Protocols

• We need to ensure that the operations provide the same 

results as if they were executed in serial.

• One-at-a-time execution...

- the simplest approach, ensure operations indeed do execute in serial

- use a Critical Section

• provided directly by language, or indirectly through mutex locks, 

synchronised blocks, or semaphores

- in a message-passing environment, assign the data structure to one 

UE and ensure all access to the data is through this UE

• usually straightforward to implement, but often overly conservative 

resulting in bottlenecks



Concurrency Control Protocols

• Create non-interfering sets of operations.

- analyze the interference between operations

• operation A interferes with operation B if A writes a variable that B

reads or writes.

- maintain disjoint sets of interfering operations, where operations 

in different sets do not interfere 

- within each disjoint set operations execute one at a time, but 

operations in different sets can proceed concurrently



Concurrency Control Protocols

• Readers/Writers

- separate operations into those that modify the data and those that 

are read only.

- if A is a writer (both modify and read) but B is reader (only read) then 

A interferes with itself and B, but B interferes with nothing. 

• therefore if one task is performing A then no other task should be able to 

execute A or B; but, any number of Bs can execute concurrently.

• this is the basis for RW locks in pthreads

- introduces some overhead, so some thought needed when 

implementing lock writers



Concurrency Protocols

• Reduce the size of the critical section.

- don’t put the whole operation in a critical section

- determine precisely the feature that causes interference

- be careful, critical sections are easy to get wrong!

• Nested locks...

- a hybrid of noninterfering operations and reducing the CS size

- if you have almost non-interfering operations, an extra lock can be 

placed around just the interfering part of the operation

• if A reads and writes to y, and B reads and writes to y then these 

operations interfere, so placing a lock around A’s y access should 

enable additional concurrency

- increased potential for deadlock



Concurrency Protocols

• Application specific semantic relaxation

- partially replicate shared data and don’t keep all of the copies 

completely in sync

- this may involve duplication of work

• a number of tasks searching for an answer based upon the same 

starting conditions

- this duplication however can be more efficient than a shared 

data scheme



Shared Data – Other considerations
• Memory synchronisation

- caching and compiler optimisation can result in unexpected behaviour

• a stale value is read from a cache or a new value is not flushed to memory 

- in OpenMP, there is a flush directive which is invoked by several other 
directives (such as after a for, critical, single, barrier.)

- in Java, memory is explicitly synchronised when entering and leaving 

synchronised blocks, when locking and unlocking locks and for all 

variables marked with volatile

- in C or FORTRAN, we have the volatile keyword too, often needed!

• Task scheduling

- will a task be idle, waiting for access to some shared data?

- can we assign tasks to UEs in such a way that minimises idle time?



Shared data – Summary

• First consider if you really have to use this pattern.

• Make use of Abstract Datatypes.

• Carefully consider the appropriate concurrency protocol.

- usually a trade off between simplicity and performance

- can I do other things (such as clever task scheduling) to minimise 

the impact this will have?



Shared Queue – Introduction

• How can concurrently-executing UEs safely share a 

queue data structure?

• Effective implementation of many parallel algorithms 

requires a queue that is to be shared among UEs.

• An example we’ve already talked about is the “task pool” 

in the Master/Worker pattern.



Shared Queue – Solution

• The queue is a FIFO data type.

p
u

t

ta
k

e

• Often implemented as a linked list.



Effect of Concurrency Control Protocol

• The majority of the important forces relate to the choice of 

concurrency-control protocol.

- One-at-a-time execution

- Non-interfering sets of operations

- Readers/Writers

- Splitting or Shrinking the Critical Section

- Nested Locks

- Application specific semantic relaxation



Shared Queue – Forces

• Simple concurrency-control protocols provide greater clarity 

of abstraction making it easier to check correctness.

- optimise only when clarity has been achieved

• Bloated synchronisation constructs increase the chance that 

UEs will remain blocked waiting to access the queue, 

limiting concurrency.

• A concurrency-control protocol finely tuned to the queue and 

how it will be used maximises the available concurrency, at 

the cost of more complicated and more error-prone 

synchronisation constructs.



Shared Queue – Solution 

• Ideally the shared queue would be implemented as part of 

the target programming language

- Java has an implementation available in 
java.util.concurrent

• Unfortunately, no mechanism available in common HPC 

languages such as MPI and OpenMP. 

• Possible to implement shared Queue within message-

passing paradigm.

- queue owned by one process

- queue access (put and take) done by messaging queue-owning 

process



Shared Queue – Solution

• Apply the shared data pattern.

• Define the ADT.

• Choose the concurrency protocol.



Shared Queue – Defining the ADT

• put (enqueue message)

• take (dequeue message)

• Other operations could be supported.

- peek, takeall, clear, isEmpty

• What to do when a queue is empty?

- block and wait for something to arrive

• could be used in Master-Worker with poison pill approach

- non-blocking queue

• return null or special value



Shared Queue – Concurrency 

control protocol

• Implementing a shared queue can be tricky.

- but if done well the implementation can be re-used widely

• Choice of protocols...

- One-at-a-time execution

- Non-interfering sets of operations

- Readers/Writers

- Splitting or Shrinking the Critical Section

- Nested Locks

- Application specific semantic relaxation



One-at-a-time (non-blocking)

1 public class SharedQueue {

2 class Node { //inner class defines list of nodes

3 Object task;

4 Node next;

5 Node(Object task) {this.task = task; next = null;}

6 }

7 private Node head = new Node(null); //dummy node

8 private Node last = head;

9

10 public synchronized void put(Object task) {...}

11 public synchronized Object take() {...}

12 private boolean isEmpty() { return head.next == null; }

13 }
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1 public class SharedQueue {

2 class Node {...}

3 private Node head = new Node(null); //dummy node

4 private Node last = head;

5

6 public synchronized void put(Object task) {

7 assert task != null: "Cannot insert null task";

8 Node p = new Node(task);

9 last.next = p;

10 last = p;

11 }

12 public synchronized Object take() {...}

13 private boolean isEmpty() { return head.next == null; }

14 }

One-at-a-time (non-blocking) – put
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1 public class SharedQueue {

2 class Node {...}

3 private Node head = new Node(null); //dummy node

4 private Node last = head;

5

6 public synchronized void put(Object task) {...}

7 public synchronized Object take() {

8 Object task = null;

9 if (!isEmpty()) {

10 Node first = head.next;

11 task = first.task;

12 first.task = null;

13 head = first;

14 }

15 return task;

16 }

17 private boolean isEmpty() { return head.next == null; }

18 }

One-at-a-time (non-blocking) – take



One-at-a-time – OpenMP

• A simple queue of integers...

1 void put (int i) {

2 #pragma omp critical

3 ...

4 #pragma omp end critical

5 }

6

7 int take() {

8 #pragma omp critical

9 ...

10 #pragma omp end critical

11 }
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1 public class SharedQueue {

2 class Node {...}

3 ...

4

5 public synchronized void put(Object task) {

6 assert task != null: "Cannot insert null task";

7 Node p = new Node(task);

8 last.next = p;

9 last = p;

10 notifyAll();

11 }

12 public synchronized Object take() {...}

13 private boolean isEmpty() { return head.next == null; }

14 }

One-at-a-time (block on empty) – put
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1 public class SharedQueue {

2 class Node {...}

3 ...

4

5 public synchronized void put(Object task) {...}

6 public synchronized Object take() {

7 Object task = null;

8 while (isEmpty()) {

9 try { wait(); }

10 catch (InterruptedException ignore) {}

11 }

12 Node first = head.next;

13 task = first.task;

14 first.task = null;

15 head = first;

16 return task;

17 }

18 private boolean isEmpty() { return head.next == null; }

19 }

One-at-a-time (block on empty) – take
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1 public class SharedQueue {

2 class Node {...}

3 ...

4

5 private Object putLock = new Object();

6 private Object takeLock = new Object();

7

8 public void put(Object task) {

9 synchronized(putLock) {...}

10 }

11 public Object take() {

12 Object task = null;

13 synchronized(takeLock) {...}

14 return task;

15 }

16 private boolean isEmpty() { return head.next == null; }

17 }

One-at-a-time (non-interfering ops)



One-at-a-time – OpenMP

• A simple queue of integers...

1 void put (int i) {

2 #pragma omp critical(put)

3 ...

4 #pragma omp end critical(put)

5 }

6

7 int take() {

8 #pragma omp critical(take)

9 ...

10 #pragma omp end critical(take)

11 }
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One-at-a-time (nested locks)

1 public class SharedQueue {

2 class Node {...}

3 ...

4

5 private int w;

6 private Object putLock = new Object();

7 private Object takeLock = new Object();

8

9 public void put(Object task) {

10 synchronized(putLock) {...}

11 }

12 public Object take() {

13 Object task = null;

14 synchronized(takeLock) {...}

15 return task;

16 }

17 private boolean isEmpty() { return head.next == null; }

18 }
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One-at-a-time (nested locks) – put

1 public class SharedQueue {

2 class Node {...}

3 ...

4

5 public void put(Object task) {

6 synchronized(putLock) {

7 assert task != null: "Cannot insert null task";

8 Node p = new Node(task);

9 last.next = p; last = p;

10 if(w>0) putLock.notify();

11 }

12 }

13 public synchronized Object take() {...}

14 private boolean isEmpty() { return head.next == null; }

15 }
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One-at-a-time (nested locks) – take

1 public Object take() {

2 Object task = null;

3 synchronized(takeLock) {

4 while (isEmpty()) {

5 try {

6 synchronized(putLock) { w++; putLock.wait(); w--; }

7 }

8 catch (InterruptedException error) { assert false; }

9 }

10 Node first = head.next;

11 task = first.task;

12 first.task = null; head = first;

13 }

14 return task;

15 }
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One-at-a-time (readers and writers) – put

1 public class SharedQueue {

2 ...

3 private Node last = head;

4

5 Rwlock rw_lock = new Rwlock();

6

7 public void put(Object task) {

8 assert task != null: "Cannot insert null task";

9 Node p = new Node(task);

10 rw_lock.writeLock();

11 last.next = p; last = p;

12 rw_lock.release();

13 }

14 ...

15 }
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1 public class SharedQueue {

2 ...

3 private Node last = head;

4

5 Rwlock rw_lock = new Rwlock();

6

7 public void put(Object task) {...}

8 public Object viewLast() {

9 Object task = null;

10 rw_lock.readLock();

11 if (!isEmpty()) {

12 task = last.task; 

13 }

14 rw_lock.release();

15 return task;

16 }

17 private boolean isEmpty() { return head.next == null; }

18 }

One-at-a-time (readers and writers) – viewLast



Distributed shared queues

• One central queue can be a bottleneck, so let’s have one 

queue per UE and distribute the tasks across P queues.

- if my local queue becomes empty then a take might “steal” an 

element from a neighbour’s queue

- if my local queue becomes full then a put might add the element to 

a neighbour’s queue

• In other words...

- each UE queues the tasks it receives

- the tasks are then executed in turn

- work stealing is permitted once a UE has completed its tasks



Shared Queue – Related Patterns

• Shared Data

- Shared Queue pattern is an instance of Shared Data pattern

• Master/Worker

- Shared Queue pattern is often used to represent the task queues in 

algorithms that use the Master/Worker pattern

• Fork/Join pattern:

- thread‐pool‐based implementation of Fork/Join pattern is supported 

by this pattern



Shared Queue – Summary

• A shared queue encapsulates the synchronisation 

required inside an abstract data type.

• Examples follow an object-orientated paradigm, but you 
can “encapsulate” internal put and take routines.

• Different implementations can vary in performance and 

complexity.

• Shared queue is a key component of various other 

parallel patterns.


