
Parallel design patterns

ARCHER course
Loop parallelism and fork/join

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

https://creativecommons.org/licenses/by-nc-sa/4.0/

This means you are free to copy and redistribute the material and adapt and build on the
material under the following terms: You must give appropriate credit, provide a link to the
license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Acknowledge EPCC as follows: “© EPCC, The University of Edinburgh, www.epcc.ed.ac.uk”

Note that this presentation contains images owned by others. Please seek their permission
before reusing these images.

2

https://creativecommons.org/licenses/by-nc-sa/4.0/

Supporting structures

SPMD

Master/worker

Loop parallelism

Fork/join

Program structures

Shared data

Shared queue

Distributed array

Data structures

Active messaging

Vectorisation

Finding Concurrency

• Task Decomposition, Data Decomposition, Group Tasks,
Order Tasks, …

Algorithm Structure

• Tasks Parallelism, Divide and Conquer, Geometric
Decomposition, Recursive Data, …

Supporting Structures

• SPMD, Master/Worker, Loop Parallelism, Fork/Join, …

Implementation Mechanisms

• UE Management, Synchronisation, Communication, …

Loop Parallelism: The Problem

• Loop Parallelism is an Implementation Strategy

• The Problem: Given a serial program whose run time is

dominated by a set of computationally intensive loops, how

can this be translated into a parallel program?

Loop parallelism

Task Parallelism Divide & Conquer
Geometric

Decomposition
Recursive Data Pipeline

Event-Based
Coordination Actor Pattern

Loop Parallelism: Context
• There are many existing loop-based programs, particularly in

scientific and engineering applications

• This type of parallelism can be added to a code incrementally

- Particularly important for large, well-established codes

• Often, little or no restructuring of the code is required

• Not suited to all programs with loops

• Not suited to all system architectures

• Works best with small-scale parallelism

- Not as much of a limitation as you might think, especially with

prevalence of multi-core

- Can also be used as part of a hybrid solution

Loop Parallelism: Forces

• Sequential Equivalence

- Identical results when run on one or many UEs.

• Incremental parallelism / refactoring

- This is really what makes this pattern powerful, and a bit different

from some of the others. It comes into its own when there is

already an existing serial code

- It would be nice to test each bit of parallelism as we add it

• Loop independence & optimisation

- Can trade off against the other two

Loop Parallelism: Solution
• This pattern is closely aligned with the style of programming

usually employed with OpenMP

• Find the bottlenecks

• Eliminate loop-carried dependencies

• Parallelise the loops

• Optimise the loop schedule

• Sometimes, to maintain efficiency by minimising the parallel

loop overhead, it is necessary to

- Join neighbouring loops, or

- Merge nested loops

Finding The Bottlenecks
• Very important!

- Because the incremental parallelisation approach lends itself to making

changes to a code immediately, it can be tempting to pick a loop (the

first one?) and put some OpenMP directives around it

• …but just because you can doesn’t mean you should!

• Identify computationally intensive loops taking into account

representative data sets either through

- Inspection and theoretical analysis of code, or more commonly

- Measuring the performance of the code with performance analysis tools

• Also bear in mind that if the runtime is not dominated by the

loops, or if not all loops can/will be parallelised, the parallel

performance will be ultimately limited by Amdahl’s Law.

Eliminating Loop-Carried Dependencies
• Loop iterations must be nearly independent

• Remove dependencies where possible:

- Replace iterative series with closed forms

- Separable dependencies:

• Replicate data, execute task, recombine data

• Use explicit synchronisation to protect shared data

- One-at-a-time execution (often overly conservative)

• OMP Critical

• Owner UE in MP environment

- Non-interfering operations

• OMP Critical with named sections

- Reader/Writer locks

- More details in Shared Data pattern (later in the lecture)

Replacing with the closed form
int ii=0;jj=0;

for (int i=0;i<N;i++) {

ii++;

d[ii]=time_consuming_work(ii);

jj=jj+i;

a[jj]=large_calculation(jj);

}

for (int i=0;i<N;i++) {

d[i]=time_consuming_work(i);

a[(i*i+i)/2]=large_calculation((i*i+i)/2);

}

• ii and jj create a

dependency between

iterations (tasks)

• But ii = i

• And jj is the sum

of 0 through i

Parallelising The Loops

• Once you’ve dealt with the dependencies, this is the easy bit!

• OpenMP has constructs exactly for this purpose

- which are semantically neutral

• Loops can be parallelised one at a time

- and tested at each stage

Optimising the loop schedule

• !$OMP PARALLEL DO SCHEDULE(type, chunk_size)

- static, dynamic, guided, (runtime, auto)

• Again, this can be added incrementally

• Dynamic is very similar in effect to a task farm

• The DO loop cannot be a DO WHILE, so you can’t do a

task farm with an unknown number of tasks

• Choice can sometimes be chosen if performance of

iterations is well understood, but often the best approach

is to experiment

Other loop optimisations
• Compute times for the loop iterations should be large enough

to offset the parallel overhead.

- Merge loops (fusion)

• More loop iterations per UE give greater scheduling flexibility

- Coalesce loops

for (i=0;i<n;i++) {

function_a(i);

}

for (i=0;i<n;i++) {

function_b(i);

}

for (i=0;i<n;i++) {

function_a(i);

function_b(i);

}

for (i=0;i<n1;i++) {

for (j=0;j<n2;j++) {

function_a(i,j);

}

}

for (c=0;c<n1*n2;c++) {

i=c/n1;

j=c%n2;

function_a(i,j);

}

Other Loop Optimisations
• Stripmining

- Enables the use of vector or

SIMD instructions

for i = 0…n

A(i)=f(i) + k(i)

for i = 0…n by B

for j = i…i+B

A(j)=f(j) + k(i)

• Interchange

- Change order of iterations

(i.e. column major)

for i=0..n

for j=0..n

A(i,j)=f(i,j)

for j=0..n

for i=0..n

A(i,j)=f(i,j)

Other loop optimisations
• Tiling

- Many cache blocking algorithms are built on this.

- Stripmine several loops and perform interchanges to bring these forward

for i = 0..n

for j = 0..n

for k = 0..n

C(i,j) += A(i,k) * B(k,j)

for ii = 0..n by B

for jj = 0..n by B

for kk = 0..n by B

for i = ii..ii + B

for j = jj..jj + B

for k = kk..kk + B

C(i,j) += A(i,k) * B(k,j)

Other Loop Optimisations

for i = 0…n

for j= 0..n

A(i,j)=B(i,j)+ C(i,j)

D(i,j)=A(i,j-1) * 2

for i = 0…n

for j= 0..n

A(i,j)=B(i,j)+ C(i,j)

for j= 0..n

D(i,j)=A(i,j-1) * 2

• Fission

- Split the loop

Other Loop Optimisations
• Unrolling

- Replicate body to reduce

overhead

for i = 0…n

A(i)=B(i)+C(i)

for i = 0…n by 4

A(i)=B(i)+C(i)

A(i+1)=B(i+1)+C(i+1)

A(i+2)=B(i+2)+C(i+2)

A(i+3)=B(i+3)+C(i+3)

• Unroll and jam

- Unroll outer loop, merge

copies of inner loop

for i=0..n

for j=0..m

A(i)=A(i)+B(j)

for i=0..n by 2

for j=0..m

A(i)=A(i)+B(j)

A(i+1)=A(i+1)+B(j)

Performance considerations
• Assumption is that there is a shared address space

with uniform access time

- Not necessarily true, NUMA architectures

• First touch principal is important

- Data is located local to a thread that first touched it,

therefore locate initialisation and compute on the same UE.

• False sharing

- Data is not shared, but resides on the same cache line

- These are repeatedly invalidated

False sharing example
N=4

M=1000

double A[N] = 0.0

#pragma omp parallel for private(j,i)

for (j=0; j<N; j++) {

for (i=0; i<M; i++) {

A[j]+=work(i,j)

}

}

#pragma omp parallel for private(j,i,temp)

for (j=0; j<N; j++) {

temp=0.0

for (i=0; i<M; i++) {

temp+=work(i,j)

}

A[j]+=temp;

}

Loop Parallelism / SPMD

• You can have loops in an SPMD program

• Key point with loop parallelism is that you never explicitly

mention a thread ID

• Often SPMD is process based whereas loop parallelism is

thread based

- Requires a fundamental difference in thinking between shared nothing

and shared everything

- These patterns can be mixed (i.e. hybrid MPI-OpenMP) which might

give extra performance/scalability at the cost of code complexity

Loop Parallelism => OpenMP?

• Often synonymous with OpenMP on CPUs

• Possible in OO languages with parallel iterators

• HPF

- forall

• UPC

- upc_forall(init; test; update; affinity)

• Fortress

- Loops are parallel by default!

• Others

- par (parallel) and for (sequential)

SunCast example

• They are all about improving the energy efficiency of buildings

- SunCast enables them to study the impact of the sun’s rays on both

existing and architectural designs

- They can then understand the relation of the sun to the thermal

properties of the building and general comfort

• Their algorithm was serial and they wanted to be able to run

this on multi-core laptops

• Integrated Environmental

Solutions is a Glasgow

based SME that EPCC

worked with a few years ago

SunCast example
• There are quite a few different

sun position scenarios that

need to be calculated

- Each of which is a loop

• There are also multiple rays from the sun hitting the building

at any one time which need to be calculated

– These rays are also in a loop

do i = 22 to 70

do j = 1 to num_rays

……

end do

end do

• Loop parallelism can therefore be

applied at two levels – at each

position & for each ray

– Sped up calculation from a few hours

to under an hour on a laptop

Loop parallelism: Summary

• Loop Parallelism has an unusual property – that it is an

incremental parallelism pattern

• Loop Parallelism can also leave programs runnable in serial

• Useful since so many programs are loop based

• The programming model for OpenMP

• Some gotya’s to be aware of

Fork-Join: The Problem

• You have a problem where the

number of concurrent tasks varies

throughout the execution of the

program and a simple control

structure such as a parallel loop is

not sufficient. How can a parallel

program be constructed around

the dynamic set of tasks?

Fork-Join: The Context
• Applicable where the algorithm imposes an irregular or

dynamic control structure

• Tasks are created dynamically (forked) and terminated (joined

with the forking task) as the program continues to execute

• In some cases, the forking pattern would be very regular. In

these cases, loop parallelism (discussed in a later lecture)

would be a better choice

- Fork-Join is more generally applicable

- Loop parallelism can be thought of as a special case of Fork-Join

• A good match, for example, with the divide & conquer pattern

discussed previously

Fork-Join: The Forces

• Algorithms often imply relationships between tasks, with

the relationships arise dynamically. It can be useful to

have the relationship between the UEs closely match the

relationship between the tasks

• A one-to-one mapping between UEs and tasks is usually

natural

- but this must be balanced against the number of UEs that a system

can handle

• UE creation and destruction are expensive operations. It

may be desirable to structure the program so as to restrict

the number of forks and joins.

Relationship to Parallel Algorithm Strategy

Divide & Conquer

Fork-Join

Task Parallelism

Event-Based
Coordination

PipelineGeometric
Decomposition

Recursive Data

Fork-Join: The Solution

• Two Possible Solutions:

- Direct task/UE mapping

- Indirect task/UE mapping

• With Fork-Join the UEs are usually (but don’t have to be)

threads

• In both cases, a fork results in an extra thread (or several

extra threads) being assigned to the problem and a join

results in the removal of threads from working on the

problem

Direct Mapping

• The simplest case

- …and a common one

• Map each task to a single UE

• As new tasks are created, new UEs are created

• There is almost always a synchronisation point where the

parent (forking) UE waits for the forked tasks to complete

and the forked UE to re-join

Indirect Mapping

• Use a thread pool

• Create threads at the start

- usually with same number of UEs as PEs

• Cheaper than thread creation/destruction

• Forking corresponds to taking a thread from the thread

pool and joining returns it to the thread pool

• A bit like a low-level implementation of the Master-Worker

pattern which will be discussed in more detail later

Fork-Join: OpenMP, Java, MPI
• The Fork-Join pattern is the standard programming model in

OpenMP

- OpenMP programs start as a single thread and on reaching a parallel

construct, a team of threads is forked

- At the end of the parallel region, the threads rejoin their parent

- In the case of loops, you get the special case of loop parallelism

• The Fork-Join pattern is also the standard implementation

model for Java threads

- Java also provides classes/interfaces to help manage Fork-Join in

java.util.concurrent

• Fork-Join can be implemented with MPI, but it’s not such a

natural fit

- In this case, indirect mapping / process pools are often used

Fork Join in OpenMP

• Using non iterative loop directives

• Parallel sections

#pragma omp parallel sections

{

#pragma omp section

{

……

}

#pragma omp section

{

……

}

}

Fork - one thread

executes code in here

Fork - one thread

executes code in here

Join - all threads block

here

Fork Join in OpenMP

• Tasks
#pragma omp parallel

{

#pragma omp task

some task

#pragma omp task

some task

#pragma omp task

some task

#pragma omp taskwait

}

• Tasks run at scheduling points (such as implicit/explicit barriers)

• This can be more flexible than sections but also the synchronisation using taskwait

can be more complex

Fork – enqueue a task to

be executed by a thread

at some point

Fork – enqueue a task to

be executed by a thread

at some point

Fork – enqueue a task to

be executed by a thread

at some point

Join – wait for all tasks to

complete

Other languages too…..

Conclusions

• Fork-Join implementation strategy is suitable for irregular

or dynamic control structures

- Tasks are created (forked) and terminated (joined) dynamically

