

 1

Pipelines

1 Introduction

We have talked about the pipeline pattern in the lecture. Imagine that the geologists using our pollution code

want to do so in a more automated, high volume approach. They want to take some raw data (for instance

produced by the pollution measuring device at each end), feed this into the simulation and then for the code to

perform some (very simple) data analysis and write these results to an output file. Many of these raw data input

files have been produced (in the data directory) which represent different locations at a specific site and hence

you need to write a parallel code to handle this. In each file there are two groups of thirty samples, the groups

represent the values at the left and right of the pipe, with thirty samples taken at each end - these samples are

quite noisy.

2 Pipeline

Your pipeline will have five stages as per Figure 1. Skeleton code has been provided which implements the actual

core work done by each stage of the pipeline and it will be your task to hook these different stages up together

using MPI.

Figure 1 - Pipeline illustration

The file names for the raw data input files will be fed into pipeline stage one (provided via command line

arguments to the code, this is done for you in the submission script) which is in the function read_files in the

provided C code, or read_data_points in the Fortran code. Each data file contains sixty values (2 groups of thirty

values, each group represents either end of the pipe.) These values should then be passed to the second stage,

average_sample_values, which will average each group, to produce two values – an averaged pollution level at

the left end and an averaged pollution level at the right end. These are passed to the third stage,

perform_calculation in the C code and run_solver in the Fortran, which solves the Laplace PDE (our current

serial 1D code) and then passes the entirety of the pipe (and boundary values) to the next stage. The fourth

stage, data_analysis in the provided code, will perform data analysis identifying two integer values - the specific

point in the pipe where the pollution is at a certain threshold (i.e. where the clean-up would need to work to)

and the number of points which are equal to or above this threshold. These two integers are passed to the fifth

stage in the pipeline, write_data in the C code and write_values in Fortran, which will write the analysed results

out to a file and output the name of the results file, each results file will be a slightly different name.

We will be using MPI for this practical, if you are not so familiar or a bit rusty with this then the course materials

of a recent ARCHER course at http://www.archer.ac.uk/training/course-material/2018/07/mpi-epcc/index.php

are a good reference.

You will need to perform a number of tasks in order to get this pipeline working (you might find it helpful to

refer to the slides of the pipeline lecture):

Read raw

input data

Average

samples

Solve

Laplace PDE

Data analysis

of results

Write out

information

Raw data

filenames

Output

filenames

http://www.archer.ac.uk/training/course-material/2018/07/mpi-epcc/index.php

 2

1. In the program entry point (the main function in C and run_pipeline subroutine in Fortran)

you will need to get hold of the MPI rank and, depending upon the rank call one of the

specific stages in the pipeline (one rank calls one stage, rank two stage two etc).

2. Now hook up the communication between the stages. Stages 2, 3, 4 and 5 need to receive

some data from their previous stage and stages 1, 2, 3 and 4 need to send data that they

have generated to the next stage. Each stage can only proceed when the previous stage has

data ready for it, so these can be blocking MPI point to point calls.

3. Consider the termination aspect, the code is currently set up for each pipeline stage to loop

indefinitely. Each stage needs to be instructed by the previous stage in the pipeline that it

should terminate and this is often done via a sentinel or poisoned pill message. You should

check the message received from the previous stage for this specific criteria. There are a

variety of different ways to do this, probably the easiest is for the previous stage to send an

empty message (i.e. message size of zero) and the receiving process to get the number of

elements in the message using MPI_Get_count from the status. If the message length is

zero, then it’s time to quit. Before quitting, each stage in the pipeline should instruct the

next stage to shutdown via which ever approach you choose (e.g. by sending an empty

message).

The path to each input file is provided as separate (delimited by a space) command line argument. The

submission script we have provided will loop through and build the command line arguments for you. You can

change this in the submission script and I would suggest initially testing your parallelisation with just one or two

of the raw data files until you are happy the data is flowing and results are coming out as expected. The first few

arguments are to the solver and are the same as those used in practical one (pipe size in X and Y, termination

residual and maximum number of iterations).

3 Calculating the load imbalance

With pipelines it is important that each stage does approximately the same amount of work as other stages. If

this is not the case, then it can result in significant load imbalance between the UEs. Remember that the Load

Imbalance Factor, LIF = maximum load / average load.

1. Each UE is already calculating its local active time by contributing to the active_time

variable. The simplest approach is for each process to dump this out at the end of execution

to stdio and then you can manually calculate the average and divide the maximum load by

this.

2. The manual approach is quite tiresome, especially as we increase the number of UEs in the

next section. Therefore, calculate the LIF in code – you can use two reductions, one to sum

up all the local active_time variables (and then divide it by the number of UEs on the root),

and the other to find the maximum active_time variable. Once you have these global values,

just do a simple division and display the LIF to stdio.

3. Bearing in mind a perfectly load balanced problem has a LIF of 1.0 and the factor tells you

how much faster the code could run given a balanced load, how do you think the load is

balanced in this case?

You can also run this through the BSC extrae tool, like in practical one by loading the bsctools/extrae/3.4.1-cray-

mpich module, issuing make clean and then make instrumented, followed by uncommenting the two

 3

appropriate lines in the submission script before submitting the job. The results can be viewed with the

wxparaver tool. This might help illustrate the source of any load imbalance.

4 Advanced exercise: Improving the load imbalance

This section is for those who have completed the pipeline and wish to further explore the example. Don't worry

if you don't get onto doing these, the most important thing is that you get the basic pipeline working.

The third stage, Laplace calculation, is the most computationally intensive part of this code and is one of the

main factors behind the large LIF. The problem with this is that whilst the Laplace calculation is taking place, the

previous stage (stage 2) is idle stuck waiting to send its data onto the third stage and stages 4 and 5 are idle

waiting for data. In this section we will modify the code so that multiple third stages of the pipeline can run, and

the second stage selects which third stage process to use in a round robin fashion.

1. Copy your pipeline so you don’t overwrite what has been already written, then work on this

copied file.

2. In selecting which UEs execute which stage of the pipeline, up until this point we have

assumed one UE per stage. That is no longer the case, in selecting which stage runs on which

UE, the logic around the first two stages can remain unchanged. The last two stages will be

mapped to the last two UEs (in the code size-1 and size-2 where size is the number of MPI

processes) and the rest of the UEs will execute the third stage. You will need to modify the

conditional in the main C function (run_pipeline Fortran subroutine) to represent this.

3. The second stage, average_sample_values will need to select the appropriate third stage UE

in a round robin fashion. I suggest having a next_rank integer, initially set to 2, and then

incremented on each pipeline send. It will need to wrap around, so when you reach the limit

of stage three UEs (when it reaches size-2), it is reset back to 2.

4. In the second stage, average_sample_values, you will also need to send the termination

poisoned pill to every stage 3 UE. Probably the easiest way is via a loop.

5. The third stage, perform_calculation C function or run_solver Fortran subroutine, will need

to know which UE rank the fourth stage is and you will need to update the sending of results

and poisoned pill to this rank.

6. You will need to update the fourth stage, data_analysis, to receive from any third stage

process. I suggest replacing the rank with MPI_ANY_SOURCE. You will also need to consider

termination here. Based on the fact that there are multiple stage trees communicating with

stage four, what is the best way of this stage knowing when to terminate? (Hint: For

termination is it not enough for just one of the stage three UEs to send the termination

poisoned pill to stage four, as other stage three UEs might be working on their calculations

and need to pass the results on at some later point.)

7. You will need to update the fifth stage, write_data in C and write_values in Fortran, to

receive data from the fourth stage (size-2) UE.

Once you have done this, compare the LIF of this parallelised pipeline with that of the initial version. What

difference does this make to the load balance and overall performance?

