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Geometric decomposition of a serial scientific code 

1 Introduction 

In this practical we will be looking at parallelising an existing serial code using the geometric decomposition 

pattern (i.e. allocating different data elements to different processes) as the algorithm strategy, and SPMD as 

the implementation strategy. The existing code is in both serial.c and serial.F90, depending which 

language you prefer, and solves Laplace's equation for diffusion. This is a partial differential 

equation, where the value at a specific point depends on the value of neighbouring points, which 

they themselves depend upon their neighbours for their values. In this case we are concerned with 

two dimensions, so the value at each point is determined by an average of the values held on the 

left, right, up and down neighbouring points. You can think of the problem as a pipe of length n 

with some concentration of pollutant at one end and a different concentration at the other. We 

want to find out the concentration of pollution all the way along the pipe and to do this are using Laplace's 

equation which solves the system to an equilibrium.  

The actual solving follows an iterative method, where we start off with our prescribed concentrations at either 

end of the pipe (boundary conditions) and at each iteration the current values for the solution are updated to 

bring them closer to the final answer. At each iteration we calculate the relative residual, which basically tells us 

how far away from the answer the solution currently is, and common practice is to keep iterating until the 

residual is small enough to match a predetermined termination accuracy. The code you have been provided with 

uses a Jacobi iterative method, which is a simple (and inefficient) solver but the convergence (progress towards 

the final solution) is predictable, identical regardless of the number of processes, often linear and certainly good 

enough for our purposes (we will look at integrating different solvers in a later practical.) 

2 Serial code 

You can download the code from the course materials page http://www.archer.ac.uk/training/course-

material/2018/11/parallel-patterns-oxford/. 

Figure 1 

Figure 2: Domain in the original serial code, where the left and right hand boundary values are shaded 
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1. In the terminal on ARCHER, CD to your work directory on ARCHER, i.e. cd 

/work/y14/y14/$USER 

2. Navigate to the course materials page in your web browser and right click on the source 

code link for practical1 and click copy link address 

3. In the terminal, on ARCHER, type in wget and paste the link you copied into here 

4. Once downloaded, you can unzip the source code via unzip practical1.zip and this will create 

a directory that you can CD into. 

5. In this directory there are C and Fortran directories for whichever flavour of code you are 

more familiar with. 

6. With either version, you can issue make in the terminal to build the source code and then 

qsub -q [RESERVATION] subpractical.pbs where RESERVATION is the daily queue code that 

has been provided to you on the guest accounts detail form. 

The first step is to compile the serial code (via the makefile, issue make in the directory) and run the executable. 

A submission PBS script is provided which will submit this on one compute node running on 1 core (which you 

can modify to run your parallelised version in section 3.) On the first line of output (iteration 0) you will see that 

the relative residual is 1, which (should be) as inaccurate as the solution gets, as the iterations progress you will 

see the residual decrease and the smaller it is the more accurate the solution. The code will terminate once a 

residual threshold has been met or a maximum number of iterations performed. Figure 2 illustrates the domain 

and the left and right most values are the initial conditions and are hard coded to high pollution and low pollution 

(with the empty boxes unknowns and their values will be calculated as the code progresses.) 

If you look in the submission script you will see there are four command line arguments provided to the code, 

the first argument is the pipe size in X (height), the second is the pipe size in Y (length), the third is the 

termination relative residual (3e-3 by default) and the fourth argument is the maximum number of iterations (0 

means no maximum.) The code will terminate either when the relative residual reaches the target (third 

command line argument) or the maximum number of iterations has been reached, whichever is soonest. 

One of the nice properties of this problem is that when we parallelise it, the convergence of the algorithm should 

not change. Therefore, an easy way to check whether your code is still working correctly is that the overall 

number of iterations, termination relative residual and progress (i.e. relative residual at n iterations) should be 

the same regardless of the number of processors. 
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3 Geometric decomposition 

In figure 2 you can see we have popped in some red dashed lines, this is where the domain can be split up across 

a number of UEs and figure 3 illustrates this in more detail. To keep it simple, whilst the problem is 2D, we are 

only going to split the problem up in 1D, in the X dimension. The reason we have chosen this X dimension (so 

effectively we split vertically i.e. the height of the pipe) rather than the Y dimension, along the pipe, is to keep 

the parallelism a bit simpler (as in the X dimension data is contiguous, so you don’t need to pack values into 

buffers and un-pack them.) Therefore, you can think of splitting this problem up by cutting up the pipe into rows 

and assigning a number of rows of the pipe to a specific process. By looking at the code we can see that the 

calculation of each point depends on each neighbouring point (see figure 1), this is called the stencil and in this 

case the stencil is of size 1 (because we are concerned with only the closest neighbour in each direction.) 

Therefore, the majority of computation will be local, apart from the points on the boundary of the local data, 

which will require neighbouring values. The arrows of figure 3 illustrate data communication that occurs as part 

of a halo swap (which we will talk about in the geometric decomposition lecture), where the blue cells are halos. 

Note that in this exercise the top halo of UE0 and the bottom halo of UE2 remain unchanged, these are set to 

zero and can remain those values. 

To keep figure 3 simple, we only show one arrow per communication (pairs of UE exchanging data, hence there 

are two arrows illustrated for each exchange.) But crucially we don't want to be issuing lots of small 

communications containing a single value (as many small communications is much more expensive than a single 

larger communication). Therefore, instead the technique of halo swapping is used where, in addition to its local 

data, each process also maintains a halo of neighbouring data (of stencil width) and these values are swapped 

at predefined intervals. The calculation then proceeds using these values until the next halo swap, in our code a 

halo swap is performed for every k iteration.  

Figure 3: Decomposed domain, height wise. Where halo cells are in blue and involved in communications 
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We will be using MPI for this practical, if you are not so familiar or a bit rusty with this then the course materials 

of a recent ARCHER course at http://www.archer.ac.uk/training/course-material/2018/07/mpi-epcc/index.php 

are a good reference. 

Your task is to parallelise, in 1D, the serial code via geometric decomposition of the data using MPI for the halo 

swapping and other communications. This will comprise of a number of steps: 

1. Determining the number of solution elements per UE, it will probably be useful to get the 

overall number of UEs (number of MPI processes) and then divide nx (the global size in X) by 

this number. You should also consider the situation where this doesn't divide evenly, for 

instance in figure 3 where we have 7 rows decomposed over three UEs. One way of handling 

this uneven decomposition is by adding an extra element to certain UEs - first divide nx by 

the number of UEs, store this as an integer local_nx. Then have something like if (myrank < 

nx - local_nx * size) local_nx++; where myrank is the current UE rank, nx is the global size in 

X and size the overall number of UEs. 

2. Allocate only the data size you need on a specific UEs. Remember that each UE will need two 

extra rows, the first row and last row being halos. You can set these to hold zero values. 

3. Extend the two residue calculation routines to compute global sums by computing local 

sums for each UE (as the code currently does) and then doing an MPI allreduce with the 

MPI_SUM operator to find the global sum, before squaring rooting the result. 

4. Implement the halo swap. For ease, the serial routine runs from 1 to nx rows and you 

probably want to keep this the same, in the zero'th row either the last non-halo row values 

from the up neighbour (rank-1) - or unchanged if this is UE 0 - and in the nx plus 1 row either 

the first non-halo row values from the down neighbour or unchanged if this is the last UE. As 

a first step do the actual halo swapping at the start of an iteration (before calculating the 

norm of the solution) and use the MPI_Sendrecv call for each halo swap communication 

(this is a blocking communication, we will look at optimising it in a minute!) 

5. Compile (via make) and run it! You will need to edit the submission script, we suggest 

running over 4 nodes (96 processes).  

Remember: The results from the parallel version should be identical to that of the serial code. So a good 

check is to run it and ensure that the relative residual displayed periodically matches the serial code. If not, 

then you have made an error somewhere! 

4 Optimising the halo swap 

The parallelisation that we have used is naïve, specifically the use of MPI_Sendrecv and whilst this is fairly simple 

to get going with, we should be able to speed up the execution of the code fairly considerably and easily by 

doing some simple optimisation steps. 

1. Make a copy of your existing parallel code (this is important as we are going to comparison 

in a few minutes time!) 

2. In this copy, replace the use of MPI_Sendrecv with that of non-blocking MPI 

communications. You will need to define an array of MPI_Request handles of size four (the 

communications that a UE will perform with its neighbouring UEs) and initially set each value 

to MPI_REQUEST_NULL. For each halo swap replace the MPI_Sendrecv call with an Isend 

and Irecv call. 

http://www.archer.ac.uk/training/course-material/2018/07/mpi-epcc/index.php
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3. Once you have replaced the blocking call with non-blocking calls for both halo swaps, issue 

an MPI_Waitall for all the communication handles immediately after the halo swapping. 

4. Issue make again to build this new version, edit the submission script to execute your new 

executable and run it. The code will provide an overall runtime on termination, how does 

using non-blocking communications impact the overall runtime? 

5 Let’s look at the performance in more detail 

It is highly likely that the two versions of the distributed code you have developed exhibit different runtime 

characteristics – and a key question is why? To explore this in more detail we are going to use some open source 

profiling tools developed by the Barcelona Supercomputing Centre (BSC) which allow us to explore parallel 

performance in a visual manner. 

1. Load the BSC profiling module via issuing module load bsctools/extrae/3.4.1-cray-mpich at 

the command line. 

2. You now need to rebuild your executables for profiling, first issue make clean at the 

command line and then make instrumented 

3. In the submission script you will see a couple of export lines commented out (for 

EXTRAE_CONFIG_FILE and EXTRAE_HOME), uncomment these two lines. 

4. Important: The profile file size can end up being quite big, and for our purposes we don’t 

need too many iterations to see what is going on. Therefore, in the submission script, set the 

maximum number of iterations by changing the last command line argument from 0 to 100. 

5. Submit jobs for both your initial, blocking, parallel implementation and your optimised non-

blocking implementation. 

6. In a separate window, ssh back into ARCHER but with X forwarding enabled (the argument -Y 

on Linux, which enables X forwarding and compresses the data to speed up transfer times.) 

Load up the paraver module, via module load bsctools/paraver/4.6.3 and start the tool by 

issuing wxparaver on the command line. 

7. In the tool click Load trace and via the menu navigate to the directory that your codes reside 

in. You should see two files with a .prv ending (one for each of the executables you ran.) 

Load the blocking code version first. 

8. There are plenty of things to explore in the Paraver tool, we are just going to look at a couple 

of them here, but feel free to have a play around with other aspects too. Once you have 

loaded the trace, under the Hints toolbar menu click MPI and then MPI Profile. Once this has 

generated if you click the magnifying glass (fourth from the left) at the top then it will show 

the overall % time spent in computation (which is what we want to maximise) and 

communication calls (what we want to minimise.) 

9. On this same window click the “D” icon (second from the left.) A new window will appear 

and this illustrates a timeline of your application. Around the middle of the trace, place the 

mouse pointer and drag a box, this has the affect of zooming in. In this zoomed in picture 

black is computation (what we want to maximise) and the other colours are communication 

calls (if you hover the mouse over them, then it will tell you which specific call the different 

colours correspond to.) Is there a pattern here at all and what proportion of computation vs 

communication is your code exhibiting? 

10. Right click on this timeline view and click synchronize (this will help us compare the non-

blocking version in a moment.) 
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11. Keeping the existing windows open, go back to the main window of Paraver and load in your 

non-blocking trace file. Again, click the Hints toolbar menu, MPI and MPI profile. Once again 

click the “D” button (second from the left.) In the new, timeline window that appears, right 

click and select synchronize – this will match the time span of the two timeline windows and 

allows us to directly compare what is going on. 

12. Based on this comparison, do the different applications exhibit different communication vs 

computation patterns? Does one application do more iterations in this timespan than the 

other? 

13. Obviously you can make these timeline windows larger, which might help you see more 

clearly what is going on. Also you can further zoom into the time by dragging a box around a 

specific area you want to focus on. 

6 Advanced exercise – further overlapping of communications 

The non-blocking communications we have used up until this point is still fairly simple. For instance, immediately 

after issuing the halo swapping communication then the UE waits for these to complete. Also the reduction each 

iteration is still a blocking one. Based on this there is some further optimisation we can do to overlap the 

communications with computation to ameliorate the overhead of communication. 

1. Make a copy of your non-blocking version and use this copy as a basis for the actions in this 

section. 

2. First let’s focus on the MPI_Allreduce issued on every iteration, replace this with a non-

blocking version (MPI_Iallreduce) and think very carefully where you need to place the 

appropriate MPI_Wait. Of course, you could place the wait immediately after the call, but 

with some code movement you can move this later on and perform computation whilst the 

reduction is in progress. 

3. After halo swapping communication the computation starts from the first non-halo row and 

proceeds to the last non-halo row. Instead modify the loop to run from the second non-halo 

row and proceed to the second to last non-halo row. Move the halo swapping MPI_Waitall 

call to after the loops and then duplicate the computation for the first non-halo row and last. 

The idea being that whilst halo swapping communication is in progress other, non 

dependent, calculations can be performed. 

4. Build this new version of the code via make and submit the job to ARCHER. How does the 

runtime compare to the other versions? 

5. Repeat the profiling steps of section 5, in Paraver how does this overlapping version 

compare against the other versions (specifically the non-blocking version?) 

7 Advanced exercise – extend the decomposition in 2D 

This section is for those who have completed the previous exercises and wish to further explore the example. 

Don't worry if you don't get onto doing these, the most important thing is that you get the geometric 

decomposition working and can see the differences between the blocking and non-blocking version. This is left 

as a more general exercise – but remember that, as well as doing the same decomposition calculations to ny 

that you did to nx previously, data is not contiguous in the Y dimension. So you will therefore need to allocate 

some buffer space for each halo swap in the Y dimension and pack data into the buffer before sending it. When 

data is received from a neighbouring process in Y then that should be received into a buffer and un-packed into 

the arrays.  
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This packing and un-packing of data adds some further complexity to the code, but obviously can be very 

important for larger problems as we have more flexibility regarding how we decompose over the UEs (and 

potentially the ability to use more UEs.) Remember, the result will be exactly the same as the other versions of 

the code – so a good check of correctness is to look at the residual values periodically reported and check that 

these match up with that of the serial code and your 1D version. 


