
Message Passing

Programming
Introduction to MPI

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/

This means you are free to copy and redistribute the material and adapt and build on the
material under the following terms: You must give appropriate credit, provide a link to the
license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Acknowledge EPCC as follows: “© EPCC, The University of Edinburgh, www.epcc.ed.ac.uk”

Note that this presentation contains images owned by others. Please seek their permission
before reusing these images.

3

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

4

What is MPI?

MPI Forum

• First message-passing interface standard.

• Sixty people from forty different organisations.

• Users and vendors represented, from the US and Europe.

• Two-year process of proposals, meetings and review.

• Message Passing Interface document produced in 1993

5

Implementation

• MPI is a library of function/subroutine calls

• MPI is not a language

• There is no such thing as an MPI compiler

• The C or Fortran compiler you invoke knows nothing

about what MPI actually does

- only knows prototype/interface of the function/subroutine calls

6

Goals and Scope of MPI

• MPI's prime goals are:

- To provide source-code portability.

- To allow efficient implementation.

• It also offers:

- A great deal of functionality.

- Support for heterogeneous parallel architectures.

7

Header files

• C/C++:

 #include <mpi.h>

• Fortran 77:

 include 'mpif.h'

• Fortran 90:

 use mpi

• Fortran 2008:

 use mpi_f08

8

MPI Function Format

• C:

 error = MPI_Xxxxx(parameter, ...);

 MPI_Xxxxx(parameter, ...);

• Fortran:

 CALL MPI_XXXXX(parameter, ..., IERROR)

- IERROR optional in 2008 version only, otherwise essential

9

Handles

• MPI controls its own internal data structures.

• MPI releases `handles' to allow programmers to refer to

these.

• C handles are of defined typedefs.

• Fortran handles are INTEGERs.

10

Initialising MPI

• C:

 int MPI_Init(int *argc, char ***argv)

• Fortran:

 MPI_INIT(IERROR)

 INTEGER IERROR

• Must be the first MPI procedure called.

- but multiple processes are already running before MPI_Init

11

MPI_Init
int main(int argc, char *argv[])

{

 ...

 MPI_Init(&argc, &argv);

 ...

int main()

{

 ...

 MPI_Init(NULL, NULL);

 ...

program my_mpi_program

 integer :: ierror

 ...

 CALL MPI_INIT(IERROR)

12

MPI_COMM_WORLD

Communicators

13

0 1

2 3 4

5
6

MPI_COMM_WORLD

Rank

• How do you identify different processes in a

communicator?

 MPI_Comm_rank(MPI_Comm comm, int *rank)

 MPI_COMM_RANK(COMM, RANK, IERROR)

 INTEGER COMM, RANK, IERROR

• The rank is not the physical processor number.

- numbering is always 0, 1, 2,, N-1

14

MPI_Comm_rank

 int rank;

 ...

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 printf(“Hello from rank %d\n”, rank);

 ...

 integer :: ierror

 integer :: rank

 ...

 CALL MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierror)

 write(*,*) ‘Hello from rank ‘, rank

 ...

15

Size

• How many processes are contained within a

communicator?

 MPI_Comm_size(MPI_Comm comm, int *size)

 MPI_COMM_SIZE(COMM, SIZE, IERROR)

 INTEGER COMM, SIZE, IERROR

16

Exiting MPI

C:

 int MPI_Finalize()

Fortran:

 MPI_FINALIZE(IERROR)

 INTEGER IERROR

Must be the last MPI procedure called.

17

What machine am I on?

• Can be useful on a cluster

- e.g. to confirm mapping of processes to nodes/processors/cores

 integer namelen

 character*(MPI_MAX_PROCESSOR_NAME) :: procname

 ...

 call MPI_GET_PROCESSOR_NAME(procname, namelen, ierror)

 write(*,*) ‘rank ‘, rank, ‘ is on machine ‘, procname(1:namelen)

 int namelen;

 char procname[MPI_MAX_PROCESSOR_NAME];

 ...

 MPI_Get_processor_name(procname, &namelen);

 printf(“rank %d is on machine %s\n", rank, procname);

19

Summary

• Have covered some basic MPI calls

- but no explicit message-passing yet

• Can still write useful programs

- e.g. a task farm of independent jobs

• Need to compile and launch parallel jobs

- procedure is not specified by MPI

- next lecture gives machine-specific details

20

