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Note that this presentation contains images owned by others. Please seek their permission 
before reusing these images. 
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What is MPI? 



MPI Forum 

• First message-passing interface standard. 

• Sixty people from forty different organisations. 

• Users and vendors represented, from the US and Europe. 

• Two-year process of proposals, meetings and review. 

• Message Passing Interface document produced in 1993 
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Implementation 

• MPI is a library of function/subroutine calls 

 

• MPI is not a language 

 

• There is no such thing as an MPI compiler 

 

• The C or Fortran compiler you invoke knows nothing 

about what MPI actually does 

- only knows prototype/interface of the function/subroutine calls 
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Goals and Scope of MPI 

• MPI's prime goals are: 

- To provide source-code portability. 

- To allow efficient implementation. 

 

• It also offers: 

- A great deal of functionality. 

- Support for heterogeneous parallel architectures. 
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Header files 

• C/C++:    

     #include <mpi.h> 

 

• Fortran 77: 

   include 'mpif.h' 

 

• Fortran 90: 

   use mpi 

 

• Fortran 2008: 

   use mpi_f08 
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MPI Function Format 

• C: 

  error = MPI_Xxxxx(parameter, ...); 

 

  MPI_Xxxxx(parameter, ...); 

 

 

• Fortran: 

  CALL MPI_XXXXX(parameter, ..., IERROR) 

 

- IERROR optional in 2008 version only, otherwise essential 
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Handles 

• MPI controls its own internal data structures. 

• MPI releases `handles' to allow programmers to refer to 

these. 

• C handles are of defined typedefs. 

• Fortran handles are INTEGERs. 
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Initialising MPI 

• C: 

   int MPI_Init(int *argc, char ***argv) 

 

• Fortran: 

   MPI_INIT(IERROR) 

    INTEGER IERROR 

 

• Must be the first MPI procedure called. 

- but multiple processes are already running before MPI_Init 
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MPI_Init 
int main(int argc, char *argv[]) 

{ 

  ... 

  MPI_Init(&argc, &argv); 

  ... 

 

int main() 

{ 

  ... 

  MPI_Init(NULL, NULL); 

  ... 

 

program my_mpi_program 

  integer :: ierror 

  ... 

  CALL MPI_INIT(IERROR) 
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MPI_COMM_WORLD 

Communicators 
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Rank 

• How do you identify different processes in a  

communicator? 

  

  MPI_Comm_rank(MPI_Comm comm, int *rank) 

 

  MPI_COMM_RANK(COMM, RANK, IERROR) 

  INTEGER COMM, RANK, IERROR 

 

• The rank is not the physical processor number. 

- numbering is always 0, 1, 2, ...., N-1 
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MPI_Comm_rank 

 int rank; 

 ... 

  MPI_Comm_rank(MPI_COMM_WORLD, &rank); 

 printf(“Hello from rank %d\n”, rank); 

 ... 

 

  integer :: ierror 

  integer :: rank 

  ... 

  CALL MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierror) 

  write(*,*) ‘Hello from rank ‘, rank 

  ... 
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Size 

• How many processes are contained within a  

communicator? 

   

  MPI_Comm_size(MPI_Comm comm, int *size) 

 

  MPI_COMM_SIZE(COMM, SIZE, IERROR) 

   INTEGER COMM, SIZE, IERROR 
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Exiting MPI 

C: 

  int MPI_Finalize() 

 

Fortran: 

   MPI_FINALIZE(IERROR) 

    INTEGER IERROR 

 

 

Must be the last MPI procedure called. 
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What machine am I on? 

• Can be useful on a cluster 

- e.g. to confirm mapping of processes to nodes/processors/cores 

 

  integer namelen 

  character*(MPI_MAX_PROCESSOR_NAME) :: procname 

  ... 

  call MPI_GET_PROCESSOR_NAME(procname, namelen, ierror) 

  write(*,*) ‘rank ‘, rank, ‘ is on machine ‘, procname(1:namelen) 

 

 

  int namelen; 

  char procname[MPI_MAX_PROCESSOR_NAME]; 

  ... 

  MPI_Get_processor_name(procname, &namelen); 

  printf(“rank %d is on machine %s\n", rank, procname); 
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Summary 

• Have covered some basic MPI calls 

- but no explicit message-passing yet 

 

• Can still write useful programs 

- e.g. a task farm of independent jobs 

 

• Need to compile and launch parallel jobs 

- procedure is not specified by MPI 

- next lecture gives machine-specific details 
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