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Overview 

• This lecture will cover 

- message passing model 

- SPMD 

- communication modes 

- collective communications 

 

4 



Programming Models 

5 

 

 

 

 

 

Control flow Variables 

Arrays 

Human-readable 

Serial Programming 

Concepts 

 

 

 

 

 if/then/else 

Languages 

Java Fortran 

struct 

Python 
C/C++ 

Subroutines 

 

 

 

 

 

Implementations 

icc 

pgcc -fast 

crayftn 

gcc -O3 

OO 

 

 

 

 

 

Processes 

SPMD 

Concepts 

 

 

 

 

 

Libraries 

 

 

 

 

 

Implementations 

Intel MPI 

Message-Passing Parallel Programming 

Groups 

Send/Receive 

Collectives 

javac 

MPI 

MPICH2 

OpenMPI 

Cray MPI 

IBM MPI craycc 

MPI_Init() 



Message Passing Model 

• The message passing model is based on the notion of 

processes 

- can think of a process as an instance of a running program, 

together with the program’s data 

• In the message passing model, parallelism is achieved by 

having many processes co-operate on the same task 

• Each process has access only to its own data 

- ie all variables are private 

• Processes communicate with each other by sending and 

receiving messages 

- typically library calls from a conventional sequential language 
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SPMD 

• Most message passing programs use the Single-

Program-Multiple-Data (SPMD) model 

• All processes run (their own copy of) the same program 

• Each process has a separate copy of the data 

• To make this useful, each process has a unique identifier 

• Processes can follow different control paths through the 

program, depending on their process ID  

• Usually run one process per processor / core 
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Emulating General Message Passing (C) 

main (int argc, char **argv) 

{ 

  if (controller_process) 

  { 

   Controller( /* Arguments */ ); 

  } 

          else 

  { 

   Worker    ( /* Arguments */ ); 

  } 

} 
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Emulating General Message Passing (F) 

PROGRAM SPMD 

    IF (controller_process) THEN 

       CALL CONTROLLER ( ! Arguments ! ) 

    ELSE 

       CALL WORKER     ( ! Arguments ! ) 

    ENDIF 

END PROGRAM SPMD 
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Messages 

• A message transfers a number of data items of a certain 

type from the memory of one process to the memory of 

another process 

 

• A message typically contains 

- the ID of the sending processor 

- the ID of the receiving processor 

- the type of the data items 

- the number of data items 

- the data itself 

- a message type identifier  
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Communication modes 

• Sending a message can either be synchronous or 

asynchronous 

• A synchronous send is not completed until the message 

has started to be received  

• An asynchronous send completes as soon as the 

message has gone 

• Receives are usually synchronous - the receiving process 

must wait until the message arrives 
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Synchronous send 

• Analogy with faxing a letter. 

• Know when letter has started to be received. 
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Asynchronous send 

• Analogy with posting a letter. 

• Only know when letter has been posted, not when it has 

been received. 
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Point-to-Point Communications 

• We have considered two processes 

- one sender 

- one receiver 

 

• This is called point-to-point communication 

- simplest form of message passing 

- relies on matching send and receive 

 

• Close analogy to sending personal emails 
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Collective Communications 

• A simple message communicates between two processes 

• There are many instances where communication between 

groups of processes is required 

• Can be built from simple messages, but often 

implemented separately, for efficiency 
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Barrier 

• Global synchronisation 

20 

Barrier 

Barrier 

Barrier 



Broadcast 

• One to all communication 
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Broadcast 

• From one process to all others 
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Scatter 

• Information scattered to many processes 
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Gather 

• Information gathered onto one process 
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Reduction Operations 

• Combine data from several processes to form a single 

result 
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Reduction 

• Form a global sum, product, max, min, etc. 
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Launching a Message-Passing Program 

• Write a single piece of source code 
• with calls to message-passing functions such as send / receive 

 

• Compile with a standard compiler and link to a message-
passing library provided for you 
• both open-source and vendor-supplied libraries exist 

 

• Run multiple copies of same executable on parallel machine 
• each copy is a separate process 

• each has its own private data completely distinct from others 

• each copy can be at a completely different line in the program 
 

• Running is usually done via a launcher program 
• “please run N copies of my executable called program.exe” 
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Issues 

• Sends and receives must match 

- danger of deadlock 

- program will stall (forever!) 

 

• Possible to write very complicated programs, but … 

- most scientific codes have a simple structure 

- often results in simple communications patterns 

 

• Use collective communications where possible 

- may be implemented in efficient ways 
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Summary (i) 

• Messages are the only form of communication 

- all communication is therefore explicit 

 

• Most systems use the SPMD model 

- all processes run exactly the same code 

- each has a unique ID 

- processes can take different branches in the same codes 

 

• Basic communications form is point-to-point 

- collective communications implement more complicated patterns 

that often occur in many codes  
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Summary (ii) 
• Message-Passing is a programming model 

- that is implemented by MPI 

- the Message-Passing Interface is a library of function/subroutine calls 

 

• Essential to understand the basic concepts 

- private variables 

- explicit communications 

- SPMD 

 

• Major difficulty is understanding the Message-Passing model 

- a very different model to sequential programming 
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if (x < 0) 

   print(“Error”); 

   exit; 


