
Message-Passing

Programming with MPI
Message-Passing Concepts

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/

This means you are free to copy and redistribute the material and adapt and build on the
material under the following terms: You must give appropriate credit, provide a link to the
license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Acknowledge EPCC as follows: “© EPCC, The University of Edinburgh, www.epcc.ed.ac.uk”

Note that this presentation contains images owned by others. Please seek their permission
before reusing these images.

3

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

Overview

• This lecture will cover

- message passing model

- SPMD

- communication modes

- collective communications

4

Programming Models

5

Control flow Variables

Arrays

Human-readable

Serial Programming

Concepts

 if/then/else

Languages

Java Fortran

struct

Python
C/C++

Subroutines

Implementations

icc

pgcc -fast

crayftn

gcc -O3

OO

Processes

SPMD

Concepts

Libraries

Implementations

Intel MPI

Message-Passing Parallel Programming

Groups

Send/Receive

Collectives

javac

MPI

MPICH2

OpenMPI

Cray MPI

IBM MPI craycc

MPI_Init()

Message Passing Model

• The message passing model is based on the notion of

processes

- can think of a process as an instance of a running program,

together with the program’s data

• In the message passing model, parallelism is achieved by

having many processes co-operate on the same task

• Each process has access only to its own data

- ie all variables are private

• Processes communicate with each other by sending and

receiving messages

- typically library calls from a conventional sequential language

6

M

P

Memory

Processor

Process

Sequential Paradigm

7

Processes

Message Passing Interface

Communication Network

0 1 2 3

Parallel Paradigm

8

P M
P M P M

P M

P M P M

P M

P M
Interconnect

Distributed-Memory Architectures

9

a=23 Recv(1,b)

Process 1 Process 2

23

23

24

23

Program

Data

Send(2,a) a=b+1

Process Communication

10

SPMD

• Most message passing programs use the Single-

Program-Multiple-Data (SPMD) model

• All processes run (their own copy of) the same program

• Each process has a separate copy of the data

• To make this useful, each process has a unique identifier

• Processes can follow different control paths through the

program, depending on their process ID

• Usually run one process per processor / core

11

Emulating General Message Passing (C)

main (int argc, char **argv)

{

 if (controller_process)

 {

 Controller(/* Arguments */);

 }

 else

 {

 Worker (/* Arguments */);

 }

}

12

Emulating General Message Passing (F)

PROGRAM SPMD

 IF (controller_process) THEN

 CALL CONTROLLER (! Arguments !)

 ELSE

 CALL WORKER (! Arguments !)

 ENDIF

END PROGRAM SPMD

13

Messages

• A message transfers a number of data items of a certain

type from the memory of one process to the memory of

another process

• A message typically contains

- the ID of the sending processor

- the ID of the receiving processor

- the type of the data items

- the number of data items

- the data itself

- a message type identifier

14

Communication modes

• Sending a message can either be synchronous or

asynchronous

• A synchronous send is not completed until the message

has started to be received

• An asynchronous send completes as soon as the

message has gone

• Receives are usually synchronous - the receiving process

must wait until the message arrives

15

Synchronous send

• Analogy with faxing a letter.

• Know when letter has started to be received.

16

Asynchronous send

• Analogy with posting a letter.

• Only know when letter has been posted, not when it has

been received.

17

Point-to-Point Communications

• We have considered two processes

- one sender

- one receiver

• This is called point-to-point communication

- simplest form of message passing

- relies on matching send and receive

• Close analogy to sending personal emails

18

Collective Communications

• A simple message communicates between two processes

• There are many instances where communication between

groups of processes is required

• Can be built from simple messages, but often

implemented separately, for efficiency

19

Barrier

• Global synchronisation

20

Barrier

Barrier

Barrier

Broadcast

• One to all communication

21

Broadcast

• From one process to all others

22

8

8 8

8

8

8

Scatter

• Information scattered to many processes

23

0 1 2 3 4 5

0

1

3

4

5

2

Gather

• Information gathered onto one process

24

0 1 2 3 4 5

0

1

3

4

5

2

Reduction Operations

• Combine data from several processes to form a single

result

25

Strike?

Reduction

• Form a global sum, product, max, min, etc.

26

0

1

3

4

5

2

15

Launching a Message-Passing Program

• Write a single piece of source code
• with calls to message-passing functions such as send / receive

• Compile with a standard compiler and link to a message-
passing library provided for you
• both open-source and vendor-supplied libraries exist

• Run multiple copies of same executable on parallel machine
• each copy is a separate process

• each has its own private data completely distinct from others

• each copy can be at a completely different line in the program

• Running is usually done via a launcher program
• “please run N copies of my executable called program.exe”

27

Issues

• Sends and receives must match

- danger of deadlock

- program will stall (forever!)

• Possible to write very complicated programs, but …

- most scientific codes have a simple structure

- often results in simple communications patterns

• Use collective communications where possible

- may be implemented in efficient ways

28

Summary (i)

• Messages are the only form of communication

- all communication is therefore explicit

• Most systems use the SPMD model

- all processes run exactly the same code

- each has a unique ID

- processes can take different branches in the same codes

• Basic communications form is point-to-point

- collective communications implement more complicated patterns

that often occur in many codes

29

Summary (ii)
• Message-Passing is a programming model

- that is implemented by MPI

- the Message-Passing Interface is a library of function/subroutine calls

• Essential to understand the basic concepts

- private variables

- explicit communications

- SPMD

• Major difficulty is understanding the Message-Passing model

- a very different model to sequential programming

30

if (x < 0)

 print(“Error”);

 exit;

