
Introduction to OpenMP
Lecture 9: Performance tuning

Sources of overhead
• There are 6 main causes of poor performance in shared memory parallel

programs:

• sequential code

• communication

• load imbalance

• synchronisation

• hardware resource contention

• compiler (non-)optimisation

• We will take a look at each and discuss ways to address them

Sequential code

• Amount of sequential code will limit performance (Amdahl’s Law)

• Need to find ways of parallelising it!

• In OpenMP, all code outside parallel regions, and inside MASTER,
SINGLE and CRITICAL directives is sequential - this code should be

as as small as possible.

Communication
• On shared memory machines, communication is “disguised”

as increased memory access costs - it takes longer to access

data in main memory or another processors cache than it does

from local cache.

• Memory accesses are expensive! (~300 cycles for a main

memory access compared to 1-3 cycles for a flop).

• Communication between processors takes place via the cache

coherency mechanism.

• Unlike in message-passing, communication is spread

throughout the program. This makes it much harder to analyse

or monitor.

Data affinity
• Data will be cached on the processors which are accessing it,

so we must reuse cached data as much as possible.

• Try to write code with good data affinity - ensure that the same

thread accesses the same subset of program data as much as

possible.

• Also try to make these subsets large, contiguous chunks of

data (avoids false sharing)

Data affinity (cont)
Example:

!$OMP DO PRIVATE(I)

do j = 1,n

do i = 1,n

a(i,j) = i+j

end do

end do

!$OMP DO SCHEDULE(STATIC,16) PRIVATE(I)

do j = 1,n

do i = 1,j

b(j) = b(j) + a(i,j)

end do

end do

Different access patterns

for a will result in

additional cache misses

Data affinity (cont)
Example:

!$OMP PARALLEL DO

do i = 1,n

... = a(i)

end do

a(:) = 26.0

!$OMP PARALLEL DO

do i = 1,n

... = a(i)

end do

a will be spread across

multiple caches

Sequential code!

a will be gathered into

one cache

a will be spread across

multiple caches again

Data affinity (cont.)

• Sequential code will take longer with multiple threads than it

does on one thread, due to the cache invalidations

• Second parallel region will scale badly due to additional cache

misses

• May need to parallelise code which does not appear to take

much time in the sequential program.

Data affinity: NUMA effects

• On distributed shared memory (cc-NUMA) systems, the

location of data in main memory is important.

• Note: all current multi-socket x86 systems are cc-NUMA!

• OpenMP has no support for controlling this (and there is still a

debate about whether it should or not!).

• Default policy for the OS is to place data on the processor

which first accesses it (first touch policy).

• For OpenMP programs this can be the worst possible option

• data is initialised in the master thread, so it is all allocated one node

• having all threads accessing data on the same node become a bottleneck

• In some OSs, there are options to control data placement
• e.g. in Linux, can use numactl change policy to round-robin

• First touch policy can be used to control data placement

indirectly by parallelising data initialisation

• even though this may not seem worthwhile in view of the insignificant time

it takes in the sequential code

• Don’t have to get the distribution exactly right

• some distribution is usually much better than none at all.

• Remember that the allocation is done on an OS page basis

• typically 4KB to 16KB

• beware of using large pages!

False sharing
• Worst cases occur where different threads repeated write neighbouring

array elements

Cures:

1. Padding of arrays. e.g.:

integer count(maxthreads)

!$OMP PARALLEL

. . .

count(myid) = count(myid) + 1

becomes

parameter (linesize = 16)

integer count(linesize,maxthreads)

!$OMP PARALLEL

. . .

count(1,myid) = count(1,myid) + 1

False sharing (cont)

2. Watch out for small chunk sizes in unbalanced loops e.g.:

!$OMP DO SCHEDULE(STATIC,1)

do j = 1,n

do i = 1,j

b(j) = b(j) + a(i,j)

end do

end do

may induce false sharing on b.

Load imbalance

• Note that load imbalance can arise from imbalances in communication as
well as in computation.

• Experiment with different loop scheduling options - use
SCHEDULE(RUNTIME).

• If none of these are appropriate, don’t be afraid to use a parallel region and
do your own scheduling (it’s not that hard!). e.g. an irregular block
schedule might be best for some triangular loop nests.

• For more irregular computations, using tasks can be helpful

• runtime takes care of the load balancing

Load imbalance (cont)
!$OMP PARALLEL DO SCHEDULE(STATIC,16) PRIVATE(I)

do j = 1,n

do i = 1,j

. . .

becomes

!$OMP PARALLEL PRIVATE(LB,UB,MYID,I)

myid = omp_get_thread_num()

lb = int(sqrt(real(myid*n*n)/real(nthreads)))+1

ub = int(sqrt(real((myid+1)*n*n)/real(nthreads)))

if (myid .eq. nthreads-1) ub = n

do j = lb, ub

do i = 1,j

. . .

Synchronisation
• Barriers can be very expensive (typically 1000s to 10000s of

clock cycles).

• Careful use of NOWAIT clauses

• .

• Parallelise at the outermost level possible.

• May require reordering of loops and/or array indices.

• Choice of CRITICAL / ATOMIC / lock routines may have

performance impact.

NOWAIT clause

• The NOWAIT clause can be used to suppress the implicit barriers at
the end of DO/FOR, SECTIONS and SINGLE directives.

Syntax:

Fortran: !$OMP DO

do loop

!$OMP END DO NOWAIT

C/C++: #pragma omp for nowait

for loop

• Similarly for SECTIONS and SINGLE.

NOWAIT clause (cont)

Example: Two loops with no dependencies

!$OMP PARALLEL

!$OMP DO

do j=1,n

a(j) = c * b(j)

end do

!$OMP END DO NOWAIT

!$OMP DO

do i=1,m

x(i) = sqrt(y(i)) * 2.0

end do

!$OMP END PARALLEL

NOWAIT clause

• Use with EXTREME CAUTION!

• All too easy to remove a barrier which is necessary.

• This results in the worst sort of bug: non-deterministic behaviour
(sometimes get right result, sometimes wrong, behaviour changes
under debugger, etc.).

• May be good coding style to use NOWAIT everywhere and make all
barriers explicit.

NOWAIT clause (cont)
Example:

!$OMP DO SCHEDULE(STATIC,1)

do j=1,n

a(j) = b(j) + c(j)

end do

!$OMP DO SCHEDULE(STATIC,1)

do j=1,n

d(j) = e(j) * f

end do

!$OMP DO SCHEDULE(STATIC,1)

do j=1,n

z(j) = (a(j)+a(j+1)) * 0.5

end do

Can remove the first

barrier, or the second,

but not both, as there is
a dependency on a

Hardware resource contention
• The design of shared memory hardware is often a cost vs.

performance trade-off.

• There are shared resources which, if all cores try to access

them at the same time, do not scale

• or, put another way, an application running on a single code can access

more than its fair share of the resources

• In particular, OpenMP threads can contend for:

• memory bandwidth

• cache capacity

• functional units (if using SMT)

Memory bandwidth

• Codes which are very bandwidth-hungry will not scale linearly

on most shared-memory hardware

• Try to reduce bandwidth demands by improving locality, and

hence the re-use of data in caches

• will benefit the sequential performance as well.

Cache space contention

• On systems where cores share some level of cache, codes

may not appear to scale well because a single core can

access the whole of the shared cache.

• Beware of tuning block sizes for a single thread, and then

running multithreaded code

• each thread will try to utilise the whole cache

SMT

• When using SMT, threads running on the same core contend

for functional units as well as cache space and memory

bandwidth.

• SMT tends to benefit codes where threads are idle because

they are waiting on memory references

• code with non-contiguous/random memory access patterns

• Codes which are bandwidth-hungry, or which saturate the

floating point units (e.g. dense linear algebra) may not benefit

from SMT

• might run slower

Compiler (non-)optimisation

• Sometimes the addition of parallel directives can inhibit the compiler
from performing sequential optimisations.

• Symptoms: 1-thread parallel code has longer execution time and
higher instruction count than sequential code.

• Can sometimes be cured by making shared data private, or local to a
routine.

Minimising overheads
My code is giving poor speedup. I don’t know why.

What do I do now?

1.

• Say “this machine/language is a heap of junk”.

• Give up and go back to your workstation/PC.

2.

• Try to classify and localise the sources of overhead.

• What type of problem is it, and where in the code does it occur?

• Use any available tools to help you (e.g. timers, hardware counters,
profiling tools).

• Fix problems which are responsible for large overheads first.

• Iterate.

Practical Session

Performance tuning

• Use a profiling tool to classify and estimate overheads.

• Work with a not very efficient implementation of the Molecular
Dynamics example.

