Introduction to OpenMP

Lecture 9: Performance tuning

EPSRC NS

-
Sources of overhead

There are 6 main causes of poor performance in shared memory parallel
programs:

sequential code
communication

load imbalance
synchronisation

hardware resource contention
compiler (non-)optimisation

We will take a look at each and discuss ways to address them

epCe

-
Sequential code

Amount of sequential code will limit performance (Amdahl’s Law)

Need to find ways of parallelising it!

In OpenMP, all code outside parallel regions, and inside MASTER,
SINGLE and CRITICAL directives is sequential - this code should be

as as small as possible.

epCe

-
Communication

On shared memory machines, communication is “disguised”
as increased memory access costs - it takes longer to access
data in main memory or another processors cache than it does
from local cache.

Memory accesses are expensive! (~300 cycles for a main
memory access compared to 1-3 cycles for a flop).

Communication between processors takes place via the cache
coherency mechanism.

Unlike in message-passing, communication is spread
throughout the program. This makes it much harder to analyse
or monitor.

epCe

5
.zf" i
&~ g -
o
o

-
Data affinity

Data will be cached on the processors which are accessing it,
so we must reuse cached data as much as possible.

Try to write code with good data affinity - ensure that the same
thread accesses the same subset of program data as much as

possible.

Also try to make these subsets large, contiguous chunks of
data (avoids false sharing)

5
.zfo 7 | &
&~ g -
o
o

epCe

00000
Data affinity (cont)

Example:
1SOMP DO PRIVATE (I)
do j =1,n
do i =1,n

a(i,j) = i+j

end do

end do

1$OMP DO SCHEDULE (STATIC,16) PRIVATE (I)

do j =1,n

do i = 1,7 Different access patterns
b(j) = b(3) + a(i,]) for a will result in

end do additional cache misses

end do

©)=rcher

epcc

Data affinity (cont)

Example:

a will be spread across
multiple caches

1SOMP PARALLEL DO
do i =1,n
. = a(i)
end do

/ a will be gathered into
a(:) = 26.0 one cache

1SOMP PARALLEL DO

Sequential code!

doi=1,n

a(i) — a will be spread across
end do — multiple caches again

epcc

e
Data affinity (cont.)

Sequential code will take longer with multiple threads than it
does on one thread, due to the cache invalidations

Second parallel region will scale badly due to additional cache
misses

May need to parallelise code which does not appear to take
much time in the sequential program.

epCe

5
.zf" i
&~ g -
o
o

I
Data affinity: NUMA effects

On distributed shared memory (cc-NUMA) systems, the
location of data in main memory is important.
Note: all current multi-socket x86 systems are cc-NUMA!

OpenMP has no support for controlling this (and there is still a
debate about whether it should or not!).

Default policy for the OS is to place data on the processor
which first accesses it (first touch policy).

For OpenMP programs this can be the worst possible option
data is initialised in the master thread, so it is all allocated one node
having all threads accessing data on the same node become a bottleneck

epcc

$
.zfo N7 ¢
&~ g -
o
o

In some OSs, there are options to control data placement
e.g. in Linux, can use numactl change policy to round-robin

First touch policy can be used to control data placement
indirectly by parallelising data initialisation

even though this may not seem worthwhile in view of the insignificant time
it takes in the sequential code

Don’t have to get the distribution exactly right
some distribution is usually much better than none at all.

Remember that the allocation is done on an OS page basis
typically 4KB to 16KB
beware of using large pages!

epCe

I
False sharing

Worst cases occur where different threads repeated write neighbouring
array elements

Cures:
1. Padding of arrays. e.g.:

integer count (maxthreads)
1SOMP PARALLEL

count (myid) = count (myid) + 1
becomes
parameter (linesize = 16)

integer count (linesize,maxthreads)
!SOMP PARALLEL

count (1, myid) = count (1l,myid) + 1

©)-rcher

epCe

-
False sharing (cont)

2. Watch out for small chunk sizes in unbalanced loops e.g.:

1SOMP DO SCHEDULE (STATIC, 1)
do j =1,n
doi=1,3
b(j) = b(3) + a(i,3)
end do
end do

may induce false sharing on b.

epCe

-
Load imbalance

Note that load imbalance can arise from imbalances in communication as
well as in computation.

Experiment with different loop scheduling options - use
SCHEDULE (RUNTIME).

If none of these are appropriate, don’t be afraid to use a parallel region and
do your own scheduling (it's not that hard!). e.g. an irregular block
schedule might be best for some triangular loop nests.

For more irregular computations, using tasks can be helpful
runtime takes care of the load balancing

epCe

-
Load imbalance (cont)

!SOMP PARALLEL DO SCHEDULE (STATIC,16) PRIVATE (I)
do j =1,n
do 1 =1,73

becomes
1$OMP PARALLEL PRIVATE (LB, UB,MYID, I)
myid = omp_get_thread num()
lb = int (sgrt (real (myid*n*n) /real (nthreads)))+1
ub = int (sqrt (real ((myid+1l) *n*n) /real (nthreads)))
if (myid .eq. nthreads-1) ub = n
do j = 1b, ub
doi=1,3

©)-rcher

epCe

-
Synchronisation

Barriers can be very expensive (typically 1000s to 10000s of
clock cycles).

Careful use of NOWAIT clauses

Parallelise at the outermost level possible.
May require reordering of loops and/or array indices.

Choice of CRITICAL / ATOMIC / lock routines may have
performance impact.

epCe

5
.zfo 7 | &
&~ g -
o
o

-
NOWAIT clause

The NOWAIT clause can be used to suppress the implicit barriers at
the end of DO/FOR, SECTIONS and SINGLE directives.

Syntax:
Fortran: ' SOMP DO

do loop
1SOMP END DO NOWAIT

C/C++: #pragma omp for nowait
for loop

Similarly for SECTIONS and SINGLE.

epCe

00000
NOWAIT clause (cont)

Example: Two loops with no dependencies
1SOMP PARALLEL

1SOMP DO
do j=1,n
a(j) = c * b(3j)
end do
!SOMP END DO NOWAIT
1SOMP DO
do i=1,m
x(1i) = sqrt(y(i)) * 2.0
end do
1SOMP END PARALLEL

epCe

-
NOWAIT clause

Use with EXTREME CAUTION!
All too easy to remove a barrier which is necessary.

This results in the worst sort of bug: non-deterministic behaviour
(sometimes get right result, sometimes wrong, behaviour changes
under debugger, etc.).

May be good coding style to use NOWAIT everywhere and make all
barriers explicit.

epCe

00000
NOWAIT clause (cont)

Example:
1SOMP DO SCHEDULE (STATIC, 1)
do j=1,n
a(j) = b(j) + c(3j)
end do
'$OMP DO SCHEDULE (STATIC, 1) Can remove the first
do j=1,n barrier, or the second,
d(3) =e(3) * £ but not both, as there is
end do a dependency on a
1SOMP DO SCHEDULE (STATIC, 1)
do j=1,n
z(j) = (a(j)+a(j+l)) * 0.5
end do

epCce

-
Hardware resource contention

The design of shared memory hardware is often a cost vs.
performance trade-oft.

There are shared resources which, if all cores try to access
them at the same time, do not scale

or, put another way, an application running on a single code can access
more than its fair share of the resources

In particular, OpenMP threads can contend for:
memory bandwidth
cache capacity
functional units (if using SMT)

epCe

-
Memory bandwidth

Codes which are very bandwidth-hungry will not scale linearly
on most shared-memory hardware

Try to reduce bandwidth demands by improving locality, and
hence the re-use of data in caches
will benefit the sequential performance as well.

5
.zfo 7 | &
&~ g -
o
o

epCe

-
Cache space contention

On systems where cores share some level of cache, codes
may not appear to scale well because a single core can
access the whole of the shared cache.

Beware of tuning block sizes for a single thread, and then
running multithreaded code
each thread will try to utilise the whole cache

epCe

5
Qfo 7 | &
&~ g -
o
P

T
SMT

When using SMT, threads running on the same core contend

for functional units as well as cache space and memory
bandwidth.

SMT tends to benefit codes where threads are idle because
they are waiting on memory references
code with non-contiguous/random memory access patterns

Codes which are bandwidth-hungry, or which saturate the

floating point units (e.g. dense linear algebra) may not benefit
from SMT

might run slower

epCe

$
.zfo N7 ¢
&~ g -
o
o

.
Compiler (non-)optimisation

Sometimes the addition of parallel directives can inhibit the compiler

from performing sequential optimisations.

Symptoms: 1-thread parallel code has longer execution time and
higher instruction count than sequential code.

Can sometimes be cured by making shared data private, or local to a
routine.

epCe

-
Minimising overheads

My code is giving poor speedup. | don’t know why.
What do | do now?
1.
Say “this machine/language is a heap of junk”.
Give up and go back to your workstation/PC.

Try to classify and localise the sources of overhead.
What type of problem is it, and where in the code does it occur?

Use any available tools to help you (e.g. timers, hardware counters,
profiling tools).

Fix problems which are responsible for large overheads first.
lterate.

epCe

-
Practical Session

Performance tuning
Use a profiling tool to classify and estimate overheads.

Work with a not very efficient implementation of the Molecular
Dynamics example.

epCe

