
Introduction to OpenMP

Lecture 7: Tasks

OpenMP tasks

• The task construct defines a section of code

• Inside a parallel region, a thread encountering a task

construct will package up the task for execution

• Some thread in the parallel region will execute the task at

some point in the future

task directive

Syntax:

Fortran:

!$OMP TASK [clauses]

structured block

!$OMP END TASK

C/C++:

#pragma omp task [clauses]

structured-block

Data Sharing
• The default for tasks is usually firstprivate, because the task may not be

executed until later (and variables may have gone out of scope).

• Variables that are shared in all constructs starting from the innermost
enclosing parallel construct are shared.

#pragma omp parallel shared(A) private(B)

{

...

#pragma omp task

{

int C;

compute(A, B, C);

}

}

A is shared

B is firstprivate

C is private

• At thread barriers (explicit or implicit)

• applies to all tasks generated in the current parallel region up to the
barrier

• At taskwait directive

• i.e. Wait until all tasks defined in the current task have completed.

• Fortran: !$OMP TASKWAIT

• C/C++: #pragma omp taskwait

• Note: applies only to tasks generated in the current task, not to
“descendants”

When/where are tasks complete?

Example

• Classic linked list traversal

• Do some work on each item in the list

• Assume that items can be processed independently

• Cannot use an OpenMP loop directive

p = listhead ;

while (p) {

process (p);

p=next(p) ;

}

Parallel pointer chasing

#pragma omp parallel

{

#pragma omp single private(p)

{

p = listhead ;

while (p) {

#pragma omp task

process (p);

p=next (p) ;

}

}

}

p is firstprivate by

default inside this
task

Only one thread
packages tasks

Parallel pointer chasing on multiple lists

#pragma omp parallel

{

#pragma omp for private(p)

for (int i =0; i <numlists ; i++) {

p = listheads [i] ;

while (p) {

#pragma omp task

process (p);

p=next (p) ;

}

}

}

All threads package
tasks

• Binary tree of tasks

• Traversed using a recursive function

• A task cannot complete until all tasks below it in the tree are complete

Example: postorder tree traversal

void postorder(node *p) {

if (p->left)

#pragma omp task

postorder(p->left);

if (p->right)

#pragma omp task

postorder(p->right);

#pragma omp taskwait

process(p->data);

}

Parent task suspended until

children tasks complete

Task switching

• Certain constructs have task scheduling points at defined

locations within them

• When a thread encounters a task scheduling point, it is

allowed to suspend the current task and execute another

(called task switching)

• It can then return to the original task and resume

• Risk of generating too many tasks

• Generating task will have to suspend for a while

• With task switching, the executing thread can:

• execute an already generated task (draining the “task pool”)

• execute the encountered task

Task switching

#pragma omp single

{

for (i=0; i<ONEZILLION; i++)

#pragma omp task

process(item[i]);

}

Using tasks
• Getting the data attribute scoping right can be quite tricky

• default scoping rules different from other constructs

• as ever, using default(none) is a good idea

• Don’t use tasks for things already well supported by OpenMP

• e.g. standard do/for loops

• the overhead of using tasks is greater

• Don’t expect miracles from the runtime

• best results usually obtained where the user controls the number
and granularity of tasks

Exercise

• Mandelbrot example using tasks.

