Introduction to OpenMP

Lecture 7: Tasks

EPSRC NS

I
OpenMP tasks

The task construct defines a section of code

Inside a parallel region, a thread encountering a task
construct will package up the task for execution

Some thread in the parallel region will execute the task at
some point in the future

epCe

$
.zfo N7 ¢
&~ g -
o
o

task directive

Syntax:
Fortran:
1SOMP TASK [clauses]
structured block
!SOMP END TASK
C/C++:

#pragma omp task [clauses]
structured-block

epCce

5
.zfo 7 ¢
&~ =
"
o
o

e
Data Sharing

The default for tasks is usually firstprivate, because the task may not be
executed until later (and variables may have gone out of scope).

Variables that are shared in all constructs starting from the innermost
enclosing parallel construct are shared.

#pragma omp parallel shared(A) private (B)

(Ais shared
. B is firstprivate
#pragma omp task Cis private
{
int C;

compute (A, B, C);

epCe

When/where are tasks complete?

At thread barriers (explicit or implicit)

applies to all tasks generated in the current parallel region up to the
barrier

At taskwait directive
l.e. Wait until all tasks defined in the current task have completed.
Fortran: !'$OMP TASKWAIT

C/C++: #pragma omp taskwait

Note: applies only to tasks generated in the current task, not to
“descendants”

epCe

e
Example

p = listhead ;
while (p) {
process (p);

p=next (p) ;
}

Classic linked list traversal

Do some work on each item in the list

Assume that items can be processed independently
Cannot use an OpenMP loop directive

epCe

5
.zf" i
&~ g -
5
-

Parallel pointer chasing Only one thread

packages tasks
#pragma omp parallel

{
#pragma omp single private (p)
{
p = listhead ;
while (p) {
#pragma omp task
process (p);
p=next (p) ;
} \
} p is firstprivate by
} default inside this
task

epCC

$
.zf" 7 | &
&~ g -
o

o

e
Parallel pointer chasing on multiple lists

#pragma omp parallel All threads package
{ tasks
#pragma omp for private (p)
for (int i =0; i <numlists ; i++) {
p = listheads [1] ;
while (p) {
#fpragma omp task
process (p);
p=next (p) ;
}

}

epCce

-
Example: postorder tree traversal

Binary tree of tasks
Traversed using a recursive function
A task cannot complete until all tasks below it in the tree are complete

void postorder (node *p) {
if (p—>left)
#pragma omp task
postorder (p—>left) ;
if (p—>right)
#pragma omp task
postorder (p->right) ;

#pragma omp taskwait ¢\\\\\\\\\\
process (p—>data) ; Parent task suspended until

} children tasks complete

epcc

e
Task switching

Certain constructs have task scheduling points at defined
locations within them

When a thread encounters a task scheduling point, it is
allowed to suspend the current task and execute another
(called task switching)

It can then return to the original task and resume

epCe

$
.zfo N7 ¢
&~ g -
o
o

I
Task switching

#pragma omp single
{
for (i=0; i<ONEZILLION; i++)
#pragma omp task
process (item[i]);

}

Risk of generating too many tasks
Generating task will have to suspend for a while

With task switching, the executing thread can:
execute an already generated task (draining the “task pooP)
execute the encountered task

epCe

Using tasks

Getting the data attribute scoping right can be quite tricky
default scoping rules different from other constructs
as ever, using default (none) is a good idea

Don’t use tasks for things already well supported by OpenMP
e.g. standard do/for loops
the overhead of using tasks is greater

Don’t expect miracles from the runtime

best results usually obtained where the user controls the number
and granularity of tasks

epCe

5
.zfo 7 | &
&~ g -
o
o

]
Exercise

Mandelbrot example using tasks.

ORIV E L

& ‘.5/
< rf A
~ = -
. RE| .
e C C N =
o <l

OpnpY

