
Introduction to OpenMP
Lecture 6: Further topics in OpenMP

Nested parallelism
• Unlike most previous directive systems, nested parallelism is

permitted in OpenMP.

• This is enabled with the OMP_NESTED environment variable or the
OMP_SET_NESTED routine.

• If a PARALLEL directive is encountered within another PARALLEL
directive, a new team of threads will be created.

• The new team will contain only one thread unless nested parallelism
is enabled.

Nested parallelism (cont)
Example:

!$OMP PARALLEL

!$OMP SECTIONS

!$OMP SECTION

!$OMP PARALLEL DO

do i = 1,n

x(i) = 1.0

end do

!$OMP SECTION

!$OMP PARALLEL DO

do j = 1,n

y(j) = 2.0

end do

!$OMP END SECTIONS

!$OMP END PARALLEL

Nested parallelism (cont)

• Not often needed, but can be useful to exploit non-

scalable parallelism (SECTIONS).

• Note: nested parallelism isn’t supported in some

implementations (the code will execute, but as if

OMP_NESTED is set to FALSE).

• turns out to be hard to do correctly without impacting performance

significantly.

NUMTHREADS clause
• One way to control the number of threads used at each level is with the

NUM_THREADS clause:

!$OMP PARALLEL DO NUM_THREADS(4)

DO I = 1,4

!$OMP PARALLEL DO NUM_THREADS(TOTALTHREADS/4)

DO J = 1,N

A(I,J) = B(I,J)

END DO

END DO

• The value set in the clause supersedes the value in the environment
variable OMP_NUM_THREADS (or that set by omp_set_num_threads()
)

Orphaned directives
• Directives are active in the dynamic scope of a parallel region, not just

its lexical scope.

• Example:
!$OMP PARALLEL

call claire()

!$OMP END PARALLEL

subroutine claire()

!$OMP DO

do i = 1,n

a(i) = a(i) + 23.5

end do

return

end

Orphaned directives (cont)

• This is very useful, as it allows a modular programming style….

• But it can also be rather confusing if the call tree is complicated (what
happens if claire is also called from outside a parallel region?)

• There are some extra rules about data scope attributes….

Data scoping rules

When we call a subroutine from inside a parallel region:

• Variables in the argument list inherit their data scope attribute from
the calling routine.

• Global variables in C++ and COMMON blocks or module variables in
Fortran are shared, unless declared THREADPRIVATE (see later).

• static local variables in C/C++ and SAVE variables in Fortran are

shared.

• All other local variables are private.

• Reduction needs some careful consideration
• If reduction declared at the parallel level data only correct after the parallel region

• Declare reduction on the orphaned loop level, make reduction variable(s) shared at

the parallel level

Binding rules

• There could be ambiguity about which parallel region directives refer
to, so we need a rule….

• DO/FOR, SECTIONS, SINGLE, MASTER and BARRIER directives
always bind to the nearest enclosing PARALLEL directive.

Thread private global variables

• It can be convenient for each thread to have its own copy of variables
with global scope (e.g. COMMON blocks and module data in Fortran,

or file-scope and namespace-scope variables in C/C++).

• Outside parallel regions and in MASTER directives, accesses to
these variables refer to the master thread’s copy.

Thread private globals (cont)

Syntax:

Fortran: !$OMP THREADPRIVATE (list)

where list contains named common blocks (enclosed in slashes),

module variables and SAVEd variables..

This directive must come after all the declarations for the common
blocks or variables.

C/C++: #pragma omp threadprivate (list)

This directive must be at file or namespace scope, after all declarations
of variables in list and before any references to variables in list. See
standard document for other restrictions.

COPYIN clause

• Allows the values of the master thread’s THREADPRIVATE data to be
copied to all other threads at the start of a parallel region.

Syntax:

Fortran: COPYIN(list)

C/C++: copyin(list)

In Fortran the list can contain variables in THREADPRIVATE COMMON
blocks.

COPYIN clause

Example:

common /junk/ nx

common /stuff/ a,b,c

!$OMP THREADPRIVATE (/JUNK/,/STUFF/)

nx = 32

c = 17.9

. . .

!$OMP PARALLEL PRIVATE(NX2,CSQ) COPYIN(/JUNK/,C)

nx2 = nx * 2

csq = c*c

. . .

if clause

• Can add if clause to:

• parallel

• for/do

• sections

• if clause takes scalar expression (C/C++) or scalar logical

expression (Fortran)
• if(i)

• if(i<100)

• logical :: mylogical

….

if(mylogical)

if clause

!$OMP PARALLEL shared(b,n) private(i)if(n>100)

!$OMP DO

do i=1,n

b(i) = b(i) * 2

end do

if(omp_in_parallel()) then

write(*,*) ‘done the work in parallel’

else

write(*,*) ‘done the work in serial’

end if

!$OMP END PARALLEL

Timing routines
OpenMP supports a portable timer:

• return current wall clock time (relative to arbitrary origin) with:

DOUBLE PRECISION FUNCTION OMP_GET_WTIME()

double omp_get_wtime(void);

• return clock precision with

DOUBLE PRECISION FUNCTION OMP_GET_WTICK()

double omp_get_wtick(void);

Using timers

DOUBLE PRECISION STARTTIME, TIME

STARTTIME = OMP_GET_WTIME()

......(work to be timed)

TIME = OMP_GET_WTIME()- STARTTIME

Note: timers are local to a thread: must make both calls on the same
thread.

Also note: no guarantees about resolution!

Exercise

Molecular dynamics again

• Aim: use of orphaned directives.

• Modify the molecular dynamics code so by placing a parallel region
directive around the iteration loop in the main program, and making all
code within this sequential except for the forces loop.

• Modify the code further so that each thread accumulates the forces
into a local copy of the force array, and reduce these copies into the
main array at the end of the loop.

