
Introduction to OpenMP
Lecture 4: Work sharing directives

Work sharing directives

• Directives which appear inside a parallel region
and indicate how work should be shared out
between threads

• Parallel do/for loops

• Single directive

• Master directive

• Sections

• Workshare

Parallel do loops

• Loops are the most common source of parallelism in most

codes. Parallel loop directives are therefore very important!

• A parallel do/for loop divides up the iterations of the loop

between threads.

• There is a synchronisation point at the end of the loop: all

threads must finish their iterations before any thread can

proceed

Parallel do/for loops (cont)

Syntax:
Fortran:

!$OMP DO [clauses]

do loop

[!$OMP END DO]

C/C++:

#pragma omp for [clauses]

for loop

Parallel do/for loops (cont)

• With no additional clauses, the DO/FOR directive will partition the
iterations as equally as possible between the threads.

• However, this is implementation dependent, and there is still some
ambiguity:

e.g. 7 iterations, 3 threads. Could partition as 3+3+1 or 3+2+2

Restrictions in C/C++

• Because the for loop in C is a general while loop, there are
restrictions on the form it can take.

• It has to have determinable trip count - it must be of the form:

for (var = a; var logical-op b; incr-exp)

where logical-op is one of <, <=, >, >=

and incr-exp is var = var +/- incr or semantic

equivalents such as var++.

Also cannot modify var within the loop body.

Parallel do/for loops (cont)
• How can you tell if a loop is parallel or not?

• Useful test: if the loop gives the same answers if it is run in reverse
order, then it is almost certainly parallel

• Jumps out of the loop are not permitted.

e.g.

do i=2,n

a(i)=2*a(i-1)

end do

Parallel do/for loops (cont)

2.

ix = base

do i=1,n

a(ix) = a(ix)*b(i)

ix = ix + stride

end do

3.

do i=1,n

b(i)= (a(i)-a(i-1))*0.5

end do

Parallel do loops (example)

Example:

!$OMP PARALLEL

!$OMP DO

do i=1,n

b(i) = (a(i)-a(i-1))*0.5

end do

!$OMP END DO

!$OMP END PARALLEL

Parallel for loops (example)

Example:

#pragma omp parallel

{

#pragma omp for

for (i=0; i < n; i++)

{

b[i] = (a[i]-a[i-1])*0.5;

}

} // omp parallel

Parallel DO/FOR directive

• This construct is so common that there is a shorthand form which
combines parallel region and DO/FOR directives:

Fortran:

!$OMP PARALLEL DO [clauses]

do loop

[!$OMP END PARALLEL DO]

C/C++:

#pragma omp parallel for [clauses]

for loop

For C/C++ no longer need the { } that the parallel region has

Clauses

• DO/FOR directive can take PRIVATE , FIRSTPRIVATE
and REDUCTION clauses which refer to the scope of the
loop.

• Note that the parallel loop index variable is PRIVATE by
default

• other loop indices are private by default in Fortran, but
not in C.

• PARALLEL DO/FOR directive can take all clauses
available for PARALLEL directive.

SCHEDULE clause

• The SCHEDULE clause gives a variety of options for specifying which
loops iterations are executed by which thread.

• Syntax:

Fortran: SCHEDULE (kind[, chunksize])

C/C++: schedule (kind[, chunksize])

where kind is one of

STATIC, DYNAMIC, GUIDED, AUTO or RUNTIME

and chunksize is an integer expression with positive value.

• E.g. !$OMP DO SCHEDULE(DYNAMIC,4)

STATIC schedule

• With no chunksize specified, the iteration space is divided into
(approximately) equal chunks, and one chunk is assigned to each
thread in order (block schedule).

• If chunksize is specified, the iteration space is divided into chunks,
each of chunksize iterations, and the chunks are assigned cyclically
to each thread in order (block cyclic schedule)

STATIC schedule

DYNAMIC schedule

• DYNAMIC schedule divides the iteration space up into chunks of size
chunksize, and assigns them to threads on a first-come-first-served
basis.

• i.e. as a thread finish a chunk, it is assigned the next chunk in the list.

• When no chunksize is specified, it defaults to 1.

GUIDED schedule

• GUIDED schedule is similar to DYNAMIC, but the chunks start off
large and get smaller exponentially.

• The size of the next chunk is proportional to the number of remaining
iterations divided by the number of threads.

• The chunksize specifies the minimum size of the chunks.

• When no chunksize is specified it defaults to 1.

DYNAMIC and GUIDED schedules

AUTO schedule

• Lets the runtime have full freedom to choose its own

assignment of iterations to threads

• If the parallel loop is executed many times, the runtime

can evolve a good schedule which has good load balance

and low overheads.

Choosing a schedule

When to use which schedule?

• STATIC best for load balanced loops - least overhead.

• STATIC,n good for loops with mild or smooth load imbalance, but can

induce overheads.

• DYNAMIC useful if iterations have widely varying loads, but ruins data

locality.

• GUIDED often less expensive than DYNAMIC, but beware of loops

where the first iterations are the most expensive!

• AUTO may be useful if the loop is executed many times over

RUNTIME schedule

• The RUNTIME schedule defers the choice of schedule to run time,
when it is determined by the value of the environment variable
OMP_SCHEDULE.

• e.g. export OMP_SCHEDULE=”guided,4”

• It is illegal to specify a chunksize in the code with the RUNTIME
schedule.

Nested loops
• For perfectly nested rectangular loops we can parallelise multiple loops in the nest with

the collapse clause:

• Perfectly nested means

• No code between the for loop statements

• Argument is number of loops to collapse starting from the outside

• Will form a single loop of length NxM and then parallelise that.

• Useful if N is O(no. of threads) so parallelising the outer loop may not have good load

balance

#pragma omp parallel for collapse(2)

for (int i=0; i<N; i++) {

for (int j=0; j<M; j++) {

.....

}

}

SINGLE directive

• Indicates that a block of code is to be executed by a single thread
only.

• The first thread to reach the SINGLE directive will execute the block

• There is a synchronisation point at the end of the block: all the other

threads wait until block has been executed.

SINGLE directive (cont)

Syntax:

Fortran:

!$OMP SINGLE [clauses]

block

!$OMP END SINGLE

C/C++:

#pragma omp single [clauses]

{

structured block

}

SINGLE directive (cont)
Example:

#pragma omp parallel

{

setup(x);

#pragma omp single

{

input(y);

}

work(x,y);

}

SINGLE directive (cont)

• SINGLE directive can take PRIVATE and FIRSTPRIVATE

clauses.

• Directive must contain a structured block
• cannot branch into or out of it.

MASTER directive

• Indicates that a block of code should be executed by the

master thread (thread 0) only.

• There is no synchronisation at the end of the block:

other threads skip the block and continue executing:
• N.B. different from SINGLE in this respect.

MASTER directive (cont)
Syntax:

Fortran:

!$OMP MASTER

block

!$OMP END MASTER

C/C++:

#pragma omp master

{

structured block

}

Parallel sections

• Allows separate blocks of code to be executed in parallel (e.g. several
independent subroutines)

• There is a synchronisation point at the end of the blocks: all threads
must finish their blocks before any thread can proceed

• Not scalable: the source code determines the amount of parallelism
available.

• Rarely used, except with nested parallelism - see later!

Parallel sections (cont)

Syntax:

Fortran:

!$OMP SECTIONS [clauses]

[!$OMP SECTION]

block

[!$OMP SECTION

block]

. . .

!$OMP END SECTIONS

Parallel sections (cont)

C/C++:

#pragma omp sections [clauses]

{

[#pragma omp section]

structured-block

[#pragma omp section

structured-block

. . .]

}

Parallel sections (cont)
Example:

!$OMP PARALLEL

!$OMP SECTIONS

!$OMP SECTION

call init(x)

!$OMP SECTION

call init(y)

!$OMP SECTION

call init(z)

!$OMP END SECTIONS

!$OMP END PARALLEL

Parallel sections (cont)

• SECTIONS directive can take PRIVATE, FIRSTPRIVATE,
LASTPRIVATE (see later) and clauses.

• Each section must contain a structured block: cannot branch into or
out of a section.

Parallel section (cont)

Shorthand form:

Fortran:

!$OMP PARALLEL SECTIONS [clauses]

. . .

!$OMP END PARALLEL SECTIONS

C/C++:

#pragma omp parallel sections [clauses]

{

. . .

}

Workshare directive

• A worksharing directive (!) which allows parallelisation of Fortran 90
array operations, WHERE and FORALL constructs.

• Syntax:

!$OMP WORKSHARE

block

!$OMP END WORKSHARE

Workshare directive (cont.)

• Simple example

REAL A(100,200), B(100,200), C(100,200)

...

!$OMP PARALLEL

!$OMP WORKSHARE

A=B+C

!$OMP END WORKSHARE

!$OMP END PARALLEL

• N.B. No schedule clause: distribution of work units to threads is entirely up to
the compiler!

• There is a synchronisation point at the end of the workshare: all threads must
finish their work before any thread can proceed

Workshare directive (cont.)

• Can also contain array intrinsic functions, WHERE and FORALL
constructs, scalar assignment to shared variables, ATOMIC and
CRITICAL directives.

• No branches in or out of block.

• No function calls except array intrinsics and those declared
ELEMENTAL.

• Combined directive:

!$OMP PARALLEL WORKSHARE

block

!$OMP END PARALLEL WORKSHARE

Workshare directive (cont.)

• Example:

!$OMP PARALLEL WORKSHARE REDUCTION(+:t)

A = B + C

WHERE (D .ne. 0) E = 1/D

t = t + SUM(F)

FORALL (i=1:n, X(i)=0) X(i)= 1

!$OMP END PARALLEL WORKSHARE

Exercise

• Redo the Mandelbrot example using a worksharing do/for directive.

