
CFD exercise 
Regular domain decomposition 
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http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US 

 
This means you are free to copy and redistribute the material and adapt and build on the 
material under the following terms: You must give appropriate credit, provide a link to the 
license and indicate if changes were made. If you adapt or build on the material you must 

distribute your work under the same license as the original. 

 

Acknowledge EPCC as follows: “© EPCC, The University of Edinburgh, www.epcc.ed.ac.uk” 

 

Note that this presentation contains images owned by others. Please seek their permission 
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Aims 

• An introduction to geometric decomposition 

- Partitioning into sub-grids and assigning these to difference 

processes 

- Halo swapping for communications 

• Gain hands on experience with performance metrics 

• Understand in more detail how specific configuration 

choices can impact our performance 

- The choice of compiler 

- Level of optimisation 
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Computational Fluid Dynamics 

Algorithm, implementation and the problem 
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Fluid Dynamics 

• Study of the mechanics of fluid flow, liquids and gases in motion. 

• Commonly requires HPC. 

• Continuous systems typically described by partial differential 

equations. 

• For a computer to simulate these systems, these equations must 

be discretised onto a grid. 

• One such discretisation approach is the finite difference method. 

• This method states that the value at any point in the grid is some 

combination of the neighbouring points 
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The Problem 

• Determining the flow pattern of a fluid in a cavity 

– a square box 

– inlet on one side 

– outlet on the other 

 

 

 

 

 

 

• For simplicity, we assume zero viscosity for this exercise  
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The Maths 

• In two dimensions, easiest to work with the stream function Y  

• At zero viscosity, Y satisfies: 

 

 

 • With finite difference form: 

 

 

𝛻2Ψ =
𝜕2Ψ

𝜕𝑥2
+
𝜕2Ψ

𝜕𝑦2
= 0 

• Jacobi iterative method can be used to find solutions 

• With boundary values fixed, stream function can be calculated for each 

point by averaging value at that point with its four nearest neighbours. 

– process continues until the algorithm converges on a solution which stays 

unchanged by the averaging. 

– iterative methods are a very common computational approach used for 

solving systems of equations 

 

 

Ψ𝑖−1,𝑗 +Ψ𝑖+1,𝑗 +Ψ𝑖,𝑗−1 +Ψ𝑖,𝑗+1 − 4Ψ𝑖,𝑗 = 0 
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Jacobi iterative method 

• To solve: 

      Repeat for many iterations: 

 loop over all points i and j: 

          psinew[i][j] = 0.25*(  psi[i+1][j] + psi[i-1][j] + 

                                  psi[i][j+1] + psi[i][j-1]   ) 

 copy psinew back to psi for next iteration 

 

• In the Fortran version of the code, array notation (arrays of size m x n) 

removes explicit loops: 

psinew(1:m,1:n) = 0.25*(psi(2:m+1, 1:n) + psi(0:m-1, 1:n) + 

                        psi(1:m, 2:n+1) + psi(1:m, 0:n-1)   ) 

 

 

 

Ψ𝑖+1,𝑗 +Ψ𝑖−1,𝑗 +Ψ𝑖,𝑗+1 +Ψ𝑖,𝑗−1 − 4Ψ𝑖,𝑗 = 0 
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Notes 

• Finite viscosity gives more realistic flows 

- introduces a new field zeta related to the vorticity 

- equations a bit more complicated but same basic approach 

 

• Terminating the process 

- larger problems require more iterations 

- fixed number of iterations OK for performance measurement but 

not if we want an accurate answer 

- compute the RMS change in psi and stop when it is small enough 
 

• There are many more efficient methods than Jacobi 

- But Jacobi is the simplest and easy to parallelise 
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Parallelisations 

How does our code take advantage of multiple processes? 
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Parallel Programming – Grids 

• The algorithm involves calculating the value at each grid point by combining it 

with the value of its neighbours. 

• Same amount of work needed to calculate each grid point – ideal for the 

geometric decomposition approach. 

• Grid is broken up into smaller grids and 

      one is allocated to each process. 
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Parallel Programming – Halo Swapping 

• Points on the edge of a grid present a challenge. Required data is 

shipped to a remote processor. Processes must therefore communicate.  

• Solution is for processor grid to have a boundary layer on adjoining sides. 

• Layer is not writable by the local process. 

• Updated by another process which in turn will have a boundary updated 

by the local process. 

• Layer is generally known as a halo and the inter-process communication 

which ensures their data is correct and up to date is a halo swap. 
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Characterising Performance 

• Speedup (S) is how much faster the parallel version runs compared to a 

non-parallel version. 

• Efficiency (E) is how effectively the available processing power is being 

used. 

 

 

• Where: 

•  P =  number of processors 

•  N = problem size (number of grid points) 

• T(N,1) time taken on 1 processor 

• T(N,P) time taken on P processors 
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Over to you 

Details of the exercise 
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Practical 

• Compile and run the code on ARCHER 

- on different numbers of cores 

- for different problem sizes 

 

• Will return to this later to study compiler optimisation 

- following slides are for interest only 
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Exercise outcomes 

What do the timings tell us about HPC machines? 
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Parallel Scaling – Number of Processors 

• Addition of parallel resources subject to diminishing returns. 

• Depends on scalability of underlying algorithms. 

• Any sources of inefficiency are compounded at higher numbers of 

processes. 

• In the CFD example, run time can become dominated by MPI 

communications rather than actual processing work. 

 

20/01/2014 

CFD Code Iterations: 10,000 Scale Factor: 40 Reynolds number: 2 

MPI procs Time Speedup Efficiency 

1 100.5 1.00 1.00 

2 53.61 1.87 0.94 

4 35.07 2.87 0.72 

8 31.34 3.21 0.40 

16 17.81 5.64 0.35 
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Parallel Scaling – Problem Size 

• Problem scale affects memory interactions – notably cache accesses. 

• Additional processors provide additional cache space. 

• Can lead to more, or even all, of a program’s working set being available 

at the cache level. 

• Configurations that achieve this will show a sudden efficiency “spike”. 

 

 

 

 

 

• 2x the number of MPI processes gives ~9.8x the speed up. 

20/01/2014 

CFD Code Iterations: 10000 Scale Factor: 70 

MPI procs Time Speedup Efficiency 

1 331.34 1.00 1.00 

48 23.27 14.24 0.30 

96 2.37 139.61 1.45 
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The impact of configuration choices 

Different compilers, optimisations and hyper-threading 
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Compiler Implementation and Platform 
• Use ARCHER as an example, where we have the Cray, Intel and GNU compilers. 

• Cray and Intel: more optimisations on by default, likely to give more performance out-of-the-

box. 

• ARCHER is a Cray system using Intel processors. Cray compiler tuned for the platform, 

Intel compiler tuned for the hardware. 

 

 

 

 

 

 

 

 

 

• GNU compiler likely to require additional compiler options... 
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Hyper-Threading 

• Intel technology – designed to increase performance using simultaneous 

multi-threading (SMT) techniques. 

• Presented as one additional logical core per physical one on the system. 

• Each node therefore reports double available processors (48 on 

ARCHER, 72 on Cirrus). 

• Must be explicitly requested with the “-j 2” option: 

 
      #PBS -l select=1 

aprun -n 48 -j 2 ./myMPIProgram 

 

• Hyper-Threading doubles the number of available parallel units per node 

at no additional resource cost. 

• However, performance effects are highly dependent on the application 

 

 

20/01/2014 
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Hyper-Threading Performance 

 

 

 

 

 

 

 

 

• Can have a positive or negative effect on run times. 

• Hyper-Threading is a bad idea for the CFD problem. 

• Experimentation is key to determining if this technique would be suitable 

for your code. 
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Process Placement 

• Many HPC machines are NUMA systems – processors access different 

regions of memory at different speeds. 

• In ARCHER compute nodes have two NUMA regions – one for each 

CPU. Hence 12 cores per region. 

• It may be desirable to control which NUMA regions processes are 

assigned to. 

 

• For example, with hybrid MPI and OpenMP jobs, it is suggested that 

processes are placed such that shared-memory threads in the same 

team access the same local memory. 

• Can be controlled with aprun flags such as: 

• -N [parallel processes per node] 

• -S [parallel processes per NUMA region] 

• -d [threads per parallel process] 
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