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Outline 

• Shared-Variables Parallelism 

- threads 

- shared-memory architectures 

• Message-Passing Parallelism 

- processes 

- distributed-memory architectures 

• Practicalities 

- usage on real HPC architectures 
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Shared Variables 

Threads-based parallelism 

4 



Shared-memory concepts 

• Have already covered basic concepts 

- threads can all see data of parent process 

- can run on different cores 

- potential for parallel speedup 
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Analogy 

• One very large whiteboard in a two-person office 

- the shared memory 

• Two people working on the same problem 

- the threads running on different cores attached to the memory 

 

• How do they collaborate? 

- working together 

- but not interfering 

 

• Also need private data 
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Threads 
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Synchronisation 

• Synchronisation crucial for shared variables approach 

- thread 2’s code must execute after thread 1 

 

• Most commonly use global barrier synchronisation 

- other mechanisms such as locks also available 

 

• Writing parallel codes relatively straightforward 

- access shared data as and when its needed 

 

• Getting correct code can be difficult! 
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Specific example 

• Computing  asum = a0+ a1 + … a7 
- shared: 

• main array: a[8] 

• result: asum 

- private: 

• loop counter: i 

• loop limits: istart, istop 

• local sum: myasum 

- synchronisation: 

• thread0: asum += myasum 

• barrier 

• thread1: asum += myasum 

 

 

 

 

 

 

 

 

loop: i = istart,istop 

  myasum += a[i] 

end loop 

asum 

asum=0 
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Reductions 

• A reduction produces a single value from associative operations such as 

addition, multiplication, max, min, and, or.  

      asum = 0; 

      for (i=0; i < n; i++) 

         asum += a[i]; 

    

• Only one thread at a time updating asum removes all parallelism 

- each thread accumulates own private copy; copies reduced to give final result. 

- if the number of operations is much larger than the number of threads, most of 

the operations can proceed in parallel 

• Want common patterns like this to be automated 

- not programmed by hand as in previous slide 
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Hardware 

• Needs support of a shared-memory architecture 
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Thread Placement: Shared Memory 
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Threads in HPC 

• Threads existed before parallel computers 

- Designed for concurrency 

- Many more threads running than physical cores 

• scheduled / descheduled as and when needed 

 

• For parallel computing 

- Typically run a single thread per core 

- Want them all to run all the time 

 

• OS optimisations 

- Place threads on selected cores 

- Stop them from migrating 
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Practicalities 
• Threading can only operate within a single node 

- Each node is a shared-memory computer (e.g. 24 cores on ARCHER) 

- Controlled by a single operating system 

 

• Simple parallelisation 

- Speed up a serial program using threads 

- Run an independent program per node (e.g. a simple task farm) 

 

• More complicated 

- Use multiple processes (e.g. message-passing – next) 

- On ARCHER: could run one process per node, 24 threads per 

process 

• or 2 procs per node / 12 threads per process or 4 / 6 ... 
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Threads: Summary 

• Shared blackboard a good analogy for thread parallelism 

• Requires a shared-memory architecture 

- in HPC terms, cannot scale beyond a single node 

 

• Threads operate independently on the shared data 

- need to ensure they don’t interfere; synchronisation is crucial 

 

• Threading in HPC usually uses OpenMP directives 

- supports common parallel patterns 

- e.g. loop limits computed by the compiler 

- e.g. summing values across threads done automatically 
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Message Passing 

Process-based parallelism 
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Analogy 

• Two whiteboards in different single-person offices 

- the distributed memory 

• Two people working on the same problem 

- the processes on different nodes attached to the interconnect 

 

• How do they collaborate? 

- to work on single problem 

 

• Explicit communication 

- e.g. by telephone 

- no shared data 
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Synchronisation 

• Synchronisation is automatic in message-passing 

- the messages do it for you 

 

• Make a phone call … 

- … wait until the receiver picks up 

• Receive a phone call 

- … wait until the phone rings 

 

• No danger of corrupting someone else’s data 

- no shared blackboard 
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Communication modes 

• Sending a message can either be synchronous or 

asynchronous 

• A synchronous send is not completed until the message 

has started to be received  

• An asynchronous send completes as soon as the 

message has gone 

• Receives are usually synchronous - the receiving process 

must wait until the message arrives 
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Synchronous send 

• Analogy with faxing a letter. 

• Know when letter has started to be received. 
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Asynchronous send 

• Analogy with posting a letter. 

• Only know when letter has been posted, not when it has been 

received. 
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Point-to-Point Communications 

• We have considered two processes 

- one sender 

- one receiver 

 

• This is called point-to-point communication 

- simplest form of message passing 

- relies on matching send and receive 

 

• Close analogy to sending personal emails 
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Message Passing: Collective 

communications 

Process-based parallelism 
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Collective Communications 

 

• A simple message communicates between two processes 

• There are many instances where communication between 

groups of processes is required 

• Can be built from simple messages, but often 

implemented separately, for efficiency 
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Broadcast: one to all communication 
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Broadcast 

• From one process to all others 
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Scatter 

• Information scattered to many processes 
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Gather 

• Information gathered onto one process 
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Reduction Operations 

• Combine data from several processes to form a single result 
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Reduction 

• Form a global sum, product, max, min, etc. 
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Hardware 

• Natural map to 

distributed-memory 

- one process per 

processor-core 

- messages go over 

the interconnect, 

between nodes/OS’s  
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Processes: Summary 

• Processes cannot share memory 

- ring-fenced from each other 

- analogous to white boards in separate offices 

 

• Communication requires explicit messages 

- analogous to making a phone call, sending an email, … 

- synchronisation is done by the messages 

 

• Almost exclusively use Message-Passing  Interface 

- MPI is a library of function calls / subroutines 
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Practicalities 

How we use the parallel models 
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Practicalities 

• 8-core machine might only have 2 
nodes 

- how do we run MPI on a real HPC 
machine? 

 

• Mostly ignore architecture 

- pretend we have single-core nodes 

- one MPI process per processor-core 

- e.g. run 8 processes on the 2 nodes 

 

• Messages between processor-
cores on the same node are fast 

- but remember they also share access 
to the network 

 

 

Interconnect 
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Message Passing on Shared Memory 

• Run one process per core 

- don’t directly exploit shared memory 

- analogy is phoning your office mate 

- actually works well in practice! 

my 

data 

 

my 

data 

 

• Message-passing 

programs run by a 

special job launcher 

• user specifies #copies 

• some control over 

allocation to nodes 
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Summary 
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Summary 

• Shared-variables parallelism 

- uses threads 

- requires shared-memory machine 

- easy  to implement but limited scalability 

- in HPC, done using OpenMP compilers 

 

• Distributed memory 

- uses processes 

- can run on any machine: messages can go over the interconnect 

- harder to implement but better scalability 

- on HPC, done using the MPI library 
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