
Sharpen Exercise: Outcomes Summary

Toni Collis

This is an example set of results from the sharpen code running on HECToR, the predecessor to ARCHER
as the UK national supercomputer. HECToR was very similar to ARCHER except that it had more CPU-
cores per node (32 on HECToR vs 24 on ARCHER).

A single node (32 cores) was used and each case repeated 5 times and averaged to produce the final
timings. Example answers to the questions raised in the practical are included below.

1 Experience Gained

Through this exercise you should have gained experience in the following:

• Accessing a remote HPC resource using SSH.

• Using the command line to navigate the file tree and examine files.

• Using the job submission system to:

– Run batch jobs using job submission scripts.

• Assessing the performance and scaling properties of a parallel application.

2 Timing Results

2.1 Overall Run Time

These are the times for the “Overall Run Time” produced by the sharpen program. This includes all parts
of the application: initialisation, input/output and calculation times. All times in seconds.

Cores Time 1 Time 2 Time 3 Time 4 Time 5 Average Time
1 10.807072 10.654838 10.652846 10.709710 10.658892 10.696672
2 5.639540 5.852772 5.642984 5.673884 5.638595 5.689555
4 2.963334 2.969696 2.974003 2.963424 2.964110 2.9669134
8 1.711736 1.746570 1.710573 1.717299 1.710906 1.7194168

16 1.034717 1.019144 1.052394 1.021498 1.020104 1.0295714
32 0.778760 0.781110 0.794290 0.818504 0.778740 0.7902808

2.2 Calculation Time

These are the results for the “Calculation Time” produced by the sharpen application. This only in-
cludes the computation time and none of the initialisation, communications or input/output. All times in
seconds.

1



Cores Time 1 Time 2 Time 3 Time 4 Time 5 Average Time
1 10.625828 10.560966 10.560098 10.560715 10.560508 10.573623
2 5.517322 5.589415 5.517923 5.516653 5.517236 5.5317098
4 2.838534 2.844219 2.839195 2.838236 2.838451 2.839727
8 1.571196 1.571108 1.571592 1.571103 1.571307 1.5712612

16 0.888845 0.875638 0.907217 0.875720 0.875330 0.88455
32 0.567534 0.569485 0.568508 0.566492 0.567021 0.567808

3 Speedup Results

All speedups are calculated relative to the time taken when using 1 core. The plot of speedup vs number
of CPU-cores used (the number of parallel MPI tasks) is shown below and the full datasets are available
in the tables.

3.1 Overall

Cores Average Time / s Perfect Speedup Speedup % of Perfect
1 10.696672 1.0 1. 100.
2 5.689555 2.0 1.8800542 94.00271
4 2.9669134 4.0 3.6053199 90.132998
8 1.7194168 8.0 6.2211047 77.763809

16 1.0295714 16.0 10.389442 64.934013
32 0.7902808 32.0 13.535280 42.29775

3.2 Calc

Cores Average Time / s Perfect Speedup Speedup % of Perfect
1 10.573623 1.0 1. 100.
2 5.5317098 2.0 1.9114566 95.57283
4 2.839727 4.0 3.7234646 93.086615
8 1.5712612 8.0 6.7293859 84.117324

16 0.88455 16.0 11.953675 74.710469
32 0.567808 32.0 18.621828 58.193213

2



4 Example answers to questions

Q. What would the speedup be in each case if the code showed perfect scaling?

See tables above: in the perfect case, using double the number of cores would halve the runtime of the
application (2x speedup); quadruple the number of cores would quarter the runtime (4x speedup); etc.

Q. How well is the code actually scaling?

The code gives >50% of perfect scaling up to 16 cores for the overall runtime which is reasonably good.
If just the calculation time is considered then the scaling is much improved. This indicates that as the
number of parallel tasks is increased then the serial components of the code begin to dominate (for
example, reading in the input and writing out the output) leading to the poorer scaling seen for overall
runtime.

Q. What is the cheapest number of cores to use for this example (assuming that you are charged as
walltime multiplied by number of cores)?

Just using a single core is the cheapest (and always will be unless your speedup is better than perfect
– “super-linear” speedup). However, we are often interested in the elapsed time as we may need to get
results as soon as possible. Also, it may not be possible to run on small numbers of cores depending on
how much memory you need.

Note: on most high-end systems, nodes are not shared between users. This means you are charged for all
the CPU-cores on a node regardless of whether you actually use them. Typically we would be running
on many hundreds of CPU-cores not a few tens, so the real question in practice is: what is the optimal
number of nodes to use?

Q. You may need more than one run at each core count to be able to compute an average runtime for the
plot to look sensible. Can you think of any reason why this may be?

Performance can vary for a single run do to contention for shared resources. As all the cases here are
run on a single node (and single nodes are not shared between users on HECToR) there is no contention
for off-node communications. However, there will be contention with other users’ jobs on the system for
access to disk to read and write files which could slow the application down.

You should see that the calculation time is much more stable than the overall time, i.e. the IO time varies
a lot (here by up to factor of 2).

3


	Experience Gained
	Timing Results
	Overall Run Time
	Calculation Time

	Speedup Results
	Overall
	Calc

	Example answers to questions

