

Image Sharpening

Practical Introduction to HPC Exercise

(ARCHER version)

 2

1 Aims

The aim of this exercise is to get you used to logging into an HPC resource, using the
command line and an editor to manipulate files, and using the batch submission system. We
will be using ARCHER for this exercise. ARCHER is the UK national HPC service, and is a
Cray XC30 system with a total of 118,010 cores (4920 nodes).

You can find more details on ARCHER and how to use it in the User Guide at:

 http://www.archer.ac.uk/documentation/user-guide/

2 Introduction

In this exercise you will run a simple program, in serial and parallel, to sharpen the provided
image. Using your provided guest account, you will:

1. log onto the ARCHER frontend nodes;
2. copy the source code from a central location to your account;
3. unpack the source code archive;
4. compile the source code to produce an executable file;
5. run a serial job on the login node;
6. submit a serial job to the compute nodes using the PBS batch system;
7. submit a parallel job using the PBS batch system;
8. run the parallel executable using an increasing number of cores and examine the

performance improvement.

Please do ask questions in the tutorials if you do not understand anything in the instructions.

3 Instructions

3.1 Log into ARCHER frontend nodes and run commands

You should use your ARCHER guest user name and password to log into ARCHER.

3.1.1 Procedure for Mac and Linux users
Open a command line Terminal and enter the following command:

ssh -XY user@login.archer.ac.uk

You should be prompted to enter your password.

3.1.2 Procedure for Windows users
Windows does not generally have SSH installed by default so some extra work is required.
You need to download and install a SSH client application - PuTTY is a good choice:

http://www.chiark.greenend.org.uk/~sgtatham/putty/

When you start PuTTY you should be able to enter the ARCHER login address
(login.archer.ac.uk).

When you connect you will be prompted for your username and password.

You can follow the instructions for setting up PuTTY by watching the introductory video here:

 https://www.youtube.com/watch?v=oVFQg1qFjKQ

http://www.archer.ac.uk/documentation/user-guide/
http://www.chiark.greenend.org.uk/~sgtatham/putty/
https://www.youtube.com/watch?v=oVFQg1qFjKQ

 3

By default, PuTTY does not send graphics back to your local machine. We will need this later
for viewing the sharpened image, so you should “Enable X11 Forwarding” which is an option
in the “Category” menu under “Connection -> SSH -> X11”. You will need to do this each time
before you log in with PuTTy.

3.2 Running commands

You can list the directories and files available by using the ls (LiSt) command:
 input

 ls

 output
 bin work

NB: The first time you do this there will be no files or directories so ’ls’ will return with an
empty line.

You can modify the behaviour of commands by adding options. Options are usually letters or
words preceded by ‘-’. For example, to see more details of the files and directories available
you can add the ‘-l’ (l for long) option to ls:

 input

 ls -l

 output
 total 8

 drwxr-sr-x 2 user z01 4096 Nov 13 14:47 bin

 drwxr-sr-x 2 user z01 4096 Nov 13 14:47 work

If you want a description of a particular command and the options available you can access
this using the man (MANual) command. For example, to show more information on ls:

 input

 man ls

 output
 Man: find all matching manual pages

 * ls (1)

 ls (1p)

 Man: What manual page do you want?

 Man:

In the manual, use the spacebar to move down, ‘u’ to move up, and ‘q’ to quit to the command
line.

3.3 Download and extract the exercise files

Firstly, change directory so you are on the “/work” file system on ARCHER.

 input

 cd /work/y14/y14/user/

You should replace “user” by your user name, e.g. guest23. /work is a high performance
parallel file system that can be accessed by both the frontend and compute nodes. All jobs on
ARCHER should be run from the /work file system. ARCHER compute nodes cannot access
the /home file system at all. Any jobs attempting to use /home will fail with an error.

Use wget (on ARCHER) to get the exercise files archive from the EPCC webserver. Material
for the course is stored at:

http://www.archer.ac.uk/training/course-material/2018/07/intro-epcc/

http://www.archer.ac.uk/training/course-material/2018/07/intro-epcc/

 4

If you access the material with a web browser it will be downloaded to your laptop, which is
not very useful if we want the files on ARCHER. It is easier to copy them straight from the
website using the wget utility on ARCHER:

 Input

 wget http://www.archer.ac.uk/training/course-

material/2018/07/intro-epcc/exercises/sharpen.tar.gz

 output

--2014-06-27 16:15:42--

http://www.archer.ac.uk/training/course-material/...

Resolving www.archer.ac.uk... 193.62.216.12

Connecting to www.archer.ac.uk|193.62.216.12|:80... connected.

HTTP request sent, awaiting response... 200 OK

Length: 1754173 (1.7M) [application/x-gzip]

Saving to: ‘sharpen.tar.gz’

100%[======================================>] 1,754,173 --.-

K/s in 0.02s

2016-07-10 16:15:42 (107 MB/s) - ‘sharpen.tar.gz.1’ saved

[1754173/1754173]

To unpack the archive:
 input

 tar -xzvf sharpen.tar.gz

 output

sharpen/C-SER/

sharpen/C-SER/filter.c

...

sharpen/F-OMP/dosharpen.f90

sharpen/F-OMP/Makefile

sharpen/F-OMP/fuzzy.pgm

If you are interested in the C examples move to the C-SER subdirectory; for Fortran, move to
F-SER. For example:

cd sharpen/C-SER

3.4 Using the Emacs text editor

Running interactive graphical applications on ARCHER can be very slow. It is therefore best
to use Emacs in in-terminal mode. In this mode you can edit the file as usual but you must
use keyboard shortcuts to run operations such as “save file” (remember, in this mode there
are no menus that can be accessed using the mouse).

Start Emacs with the emacs -nw command and the name of the file you wish to edit or create.
For example:

emacs -nw sharpen.pbs

The terminal will change to show that you are now inside the Emacs text editor:

 5

Typing will insert text as you would expect and backspace will delete text. You use special
key sequences (involving the Ctrl and Alt buttons) to save files, exit Emacs and so on.

Files can be saved using the sequence “Ctrl-x Ctrl-s” (usually abbreviated in Emacs
documentation to “C-x C-s”). You should see the following briefly appear in the line at the
bottom of the window (the minibuffer in Emacs-speak):

Wrote ./sharpen.pbs

To exit Emacs and return to the command line use the sequence “C-x C-c”. If you have
changes in the file that have not yet been saved Emacs will prompt you (in the minibuffer) to
ask if you want to save the changes or not.

Although you could edit files on your local machine using whichever windowed text editor you
prefer it is useful to know enough to use an in-terminal editor as there will be times where you
want to perform a quick edit that does not justify the hassle of editing and re-uploading.

3.5 Useful commands for examining files

There are a couple of commands that are useful for displaying the contents of plain text files
on the command line that you can use to examine the contents of a file without having to
open in in Emacs (if you want to edit a file then you will need to use Emacs). The commands
are cat and less. cat simply prints the contents of the file to the terminal window and returns to
the command line. For example:

cat sharpen.pbs

...

This is fine for small files where the text fits in a single terminal window. For longer files you
can use the less command: less gives you the ability to scroll up and down in the specified
file. For example:

less Makefile

Once in less you can use the spacebar to scroll down and ‘u’ to scroll up. When you have
finished examining the file you can use ‘q’ to exit less and return to the command line.

 6

This program takes a fuzzy image and uses a simple algorithm to sharpen the image. A very
basic parallel version of the algorithm has been implemented which we will use in this
exercise. There are a number of versions of the sharpen program available:

 C-SER Serial C version

 F-SER Serial Fortran version

 C-MPI Parallel C version using MPI

 F-MPI Parallel Fortran version using MPI

 C-OMP Parallel C version using OpenMP

 F-OMP Parallel Fortran version using OpenMP

3.6 Compile the source code to produce an executable file

We will first compile the serial version (using the make command) of the code for our
example.

input

ls

output
cio.c filter.c Makefile sharpen.h utilities.c

dosharpen.c fuzzy.pgm sharpen.c sharpen.pbs utilities.h

input

make

output
cc -g -DC_SERIAL_PRACTICAL -c sharpen.c

cc -g -DC_SERIAL_PRACTICAL -c dosharpen.c

cc -g -DC_SERIAL_PRACTICAL -c filter.c

cc -g -DC_SERIAL_PRACTICAL -c cio.c

cc -g -DC_SERIAL_PRACTICAL -c utilities.c

cc -g -DC_SERIAL_PRACTICAL -o sharpen sharpen.o dosharpen.o

filter.o cio.o utilities.o

This should produce an executable file called sharpen which we will run on ARCHER. For the
Fortran version, the process is exactly the same as above, except you should move to the F-
SER subdirectory and build the program there:

input

cd sharpen/F-SER

make

As before, this should produce a sharpen executable. Don’t worry about the C file utilities.c –
it is just providing an easy method for printing out various information about the program at
run time, and it is most easily implemented in C rather than Fortran.

3.7 Running a serial job

You can run this serial program directly on the login nodes, e.g.:

input

./sharpen

output
Image sharpening code running in serial

Input file is: fuzzy.pgm

Image size is 564 x 770

Using a filter of size 17 x 17

Reading image file: fuzzy.pgm

... done

 7

Starting calculation ...

On core 0-31

... finished

Writing output file: sharpened.pgm

... done

Calculation time was 5.579000 seconds

Overall run time was 5.671895 seconds

3.8 Viewing the images

To see the effect of the sharpening algorithm, you can view the images using the display
program from the ImageMagick suite.

input

display fuzzy.pgm

display sharpened.pgm

Type “q” in the image window to close the program.

To view the image you will need an X window client installed. Linux or Mac systems will
generally have such a program available, but Windows does not provide X windows
functionality by default. There are many X window systems available to install on Windows;
we recommend Xming available at:

 http://sourceforge.net/projects/xming/

3.9 Running on the compute nodes

Remember you must be in the “/work” file system on ARCHER – the default is /home

As with other HPC systems, use of the compute nodes on ARCHER is mediated by the PBS
job submission system. This is used to ensure that all users get access to their fair share of
resources, to make sure that the machine is as efficiently used as possible and to allow users
to run jobs without having to be physically logged in.

Whilst it is possible to run interactive jobs (jobs where you log directly into the backend nodes
on ARCHER and run your executable there) on ARCHER, and they are useful for debugging
and development, they are not ideal for running long and/or large numbers of production jobs
as you need to be physically interacting with the system to use them.

The solution to this, and the method that users generally use to run jobs on systems like
ARCHER, is to run in batch mode. In this case you put the commands you wish to run in a file
(called a job script) and the system executes the commands in sequence for you with no need
for you to be interacting.

3.9.1 Using PBS job scripts

We will first run the same serial program on the compute nodes. Look at the batch script:

input

emacs –nw sharpen.pbs

The first line specifies which shell to use to interpret the commands we include in the script.
Here we use the Bourne Again SHell (bash), which is the default on most modern systems.
The –login option tells the shell to behave as if it was an interactive shell.

The line -l select=[nodes] is used to request the total number of compute nodes required for
your job (1 in the example above).

http://sourceforge.net/projects/xming/

 8

The #PBS lines provide options to the job submission system where “-l select” specifies that
we want to reserve 1 compute node for our job - the minimum job size on ARCHER is 1 node
(24 cores); the “-l walltime=00:01:00” sets the maximum job length to 1 minute; “-A y14” sets
the budget to charge the job to “y14”; “-N sharpen” sets the job name to “sharpen”.

The remaining lines are the commands to be executed in the job. Here we have a comment
beginning with “#”, a directory change to $PBS_O_WORKDIR (an environment variable that
specifies the directory the job was submitted from) and the aprun command (this command
tells the system to run the jobs on the compute nodes rather than the frontend nodes).

Jobs can only be run on the compute nodes with the aprun parallel job launcher. The line
aprun -n 1 ./sharpen runs a single copy of our serial executable.

3.9.2 Submitting scripts to PBS

Simply use the qsub command:

input

qsub –q RXXXXXX sharpen.pbs

output
58306.sdb

You will be given the number of the reserved course queue RXXXXXX. The jobID returned
from the qsub command is used as part of the names of the output files discussed below and
also when you want to delete the job (for example, you have submitted the job by mistake).

3.9.3 Monitoring/deleting your batch job

The PBS command qstat can be used to examine the batch queues and see if your job is
queued, running or complete. qstat on its own will list all the jobs on ARCHER (usually
hundreds) so you can use the “-u $USER” option to only show your jobs:

input

qstat -u $USER

output
 Req’d Req’d Elap

Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time

--------------- -------- -------- ---------- ------ --- --- ------ ----- - ----

58306.sdb user standard sharpen -- 1 36 -- 00:01 Q --

“Q” means the job is queued, “R” that it is running and “E” that it has recently completed; if
you do not see your job, it usually means that it has completed.

If you want to delete a job, you can use the qdel command with the jobID. For example:

input

qdel 58306.sdb

3.9.4 Finding the output

The job submission system places the output from your job into two files: <job
name>.o<jobID> and <job name>.e<jobID> (note that the files are only produced on
completion of the job). The sharpen.o<jobID> file contains the output from your job
sharpen.e<jobID> contains any errors.

input

cat sharpen.o58306

 9

output
Image sharpening code running in serial

Input file is: fuzzy.pgm

Image size is 564 x 770

Using a filter of size 17 x 17

Reading image file: fuzzy.pgm

... done

Starting calculation ...

On core 0

... finished

Writing output file: sharpened.pgm

... done

Calculation time was 5.400482 seconds

Overall run time was 5.496556 seconds

Application 166570 resources: utime ~6s, stime ~0s, Rss ~18024,

inblocks ~11176, outbl

4 Running in Parallel

4.1 Running a parallel job on the compute nodes

Repeat the same procedure as above but use the parallel MPI version of the code in C-
MPI or F-MPI. By default, the batch script is set up to run on 4 cores. You should see
that that the parallel code is faster than the serial one.

4.2 Timings

If you examine the log file you will see that it contains two timings: the total time taken by the
entire program (including IO) and the time taken solely by the calculation. The image input
and output is not parallelised so this is a serial overhead, performed by a single processor.
The calculation part is, in theory, perfectly parallel (each processor operates on different parts
of the image) so this should get faster on more cores.

You should run a number of jobs and fill in Table 1 below: the IO time is the difference
between the calculation time and the overall run time; the total CPU time is the
calculation time multiplied by the number of cores.

 If you want to run on more than 24 cores then you will need to request more than one
node with the ”select=” option to PBS – each ARCHER node only has 24 CPU-cores.

Once you have completed Table 1, you should have the information required to complete
Table 2 to compute the speedup of the parallel code overall, of the calculation part and of the
IO part. Remember that the speedup is the ratio of runtime at 1 core compared to the runtime
at P cores.

Look at your results – do they make sense? Given the structure of the code, you would
expect the IO time to be roughly constant, and the performance of the calculation to increase
linearly with the number of cores: this would give a roughly constant figure for the total CPU
time. Is this what you observe?

4.3 Plotting the speedup

You should also produce a speedup plot where you with number of cores (on the x-axis)
versus speedup (on the y-axis). Plot all three speedup curves on the same graph.

To aid you with plotting graphs we provide a small Python plotting utility, plotxy.py that you
can download from the ARCHER website with:

 10

wget http://www.archer.ac.uk/training/courses/2016/PracIntroHPC/util/plotxy.py

If you put your data in CSV (comma-separated value) form in a file then it will plot them for
you. For example, to plot the speedup data you would create a file with five values per line:
the number of cores followed by each of the speedup values for that core count:

<cores>, <ideal>, <overall>, <calculation>, <io>

You could create this file using Emacs:

emacs –nw speedup.csv

and the first couple of lines may look like:

1, 1.000, 1.000, 1.000, 1.000

2, 2.000, 1.877, 1.920, 1.014

Once you have the data in a CSV format you can plot it with the commands:

module load anaconda

python plotxy.py speedup.csv speedup.png

(The Anaconda packagecontains many useful Python libraries, including those that can be
used for plotting data: matplotlib). The utility will save a PNG image containing the plot in the
second file name you specify on the command line. You can view the plot using the “display”
command as you used for the image:

display speedup.png

This is a very simple plot to allow you to quickly preview results – if you were plotting for
including in a report or paper you would produce something more elaborate (including axis
labels, proper series labels,etc.).

4.4 OpenMP code

If you are interested, you can try running the OpenMP code in C-OMP or F-OMP.

Note that to change the number of cores that the program uses you must set the environment
variable OMP_NUM_THREADS. This is already done for you in the PBS script, although you
will need to change the actual number yourself.

Note that you can run using multiple threads on the login nodes – you must set
OMP_NUM_THREADS before you run, e.g.:

export OMP_NUM_THREADS=4

./sharpen

The maximum number of cores you can use with OpenMP is 24.

 11

5 Tables

Cores Overall run time Calculation time IO time Total CPU time

1

2

4

7

10

24

48

96

192

Table1: Time taken by parallel image processing code

Cores Ideal Speedup Overall speedup Calculation Speedup IO Speedup

1

2

4

7

10

24

48

96

192

Table2: Speedup for parallel image processing code

