
Advanced OpenMP

Memory model, flush and atomics

Why do we need a memory model?
• On modern computers code is rarely executed in the

same order as it was specified in the source code.
• Compilers, processors and memory systems reorder code

to achieve maximum performance.
• Individual threads, when considered in isolation, exhibit
as-if-serial semantics.

• Programmer’s assumptions based on the memory model
hold even in the face of code reordering performed by the
compiler, the processors and the memory.

2

Example
• Reasoning about multithreaded execution is not that

simple.

Thread 1 Thread 2
x=1; int r1=y;
y=1; int r2=x;

• If there is no reordering and T2 sees value of y on read to
be 1 then the following read of x should also return the
value 1. If code in T1 is reordered we can no longer make
this assumption.

3

OpenMP Memory Model

• OpenMP supports a relaxed-consistency shared memory
model.

• Threads can maintain a temporary view of shared memory
which is not consistent with that of other threads.

• These temporary views are made consistent only at certain
points in the program.

• The operation which enforces consistency is called the flush
operation

4

Flush operation

• Defines a sequence point at which a thread is guaranteed to
see a consistent view of memory
- All previous read/writes by this thread have completed and are visible

to other threads
- No subsequent read/writes by this thread have occurred
- A flush operation is analogous to a fence in other shared memory

API’s

5

Flush and synchronization

• A flush operation is implied by OpenMP synchronizations, e.g.
- at entry/exit of parallel regions
- at implicit and explicit barriers
- at entry/exit of critical regions
- whenever a lock is set or unset
….
(but not at entry to worksharing regions or entry/exit of master regions)

• Note: using the volatile qualifier in C/C++ does not give
sufficient guarantees about multithreaded execution.

6

Example: producer-consumer pattern

• This is incorrect code
• The compiler and/or hardware may re-order the reads/writes

to a and flag, or flag may be held in a register.
• OpenMP has a flush directive which specifies an explicit flush

operation
-can be used to make the above example work
!$omp flush #pragma omp flush

Thread 0

a = foo();
flag = 1;

Thread 1

while (!flag);
b = a;

7

Using flush
• In order for a write of a variable on one thread to be

guaranteed visible and valid on a second thread, the
following operations must occur in the following order:

1. Thread A writes the variable
2. Thread A executes a flush operation
3. Thread B executes a flush operation
4. Thread B reads the variable

8

Example: producer-consumer pattern
Thread 0

a = foo();
#pragma omp flush
flag = 1;
#pragma omp flush

Thread 1

#pragma omp flush
while (!flag){
#pragma omp flush
}
#pragma omp flush
b = a;

First flush ensures flag
is written after a

Second flush ensures
flag is written to
memory

First and second flushes
ensure flag is read
from memory

Third flush ensures
correct ordering of
flushes

9

Using flush

• Using flush correctly is difficult and prone to subtle bugs
- extremely hard to test whether code is correct
-may execute correctly on one platform/compiler but not on another
- bugs can be triggered by changing the optimisation level on the

compiler

• Don’t use it unless you are 100% confident you know
what you are doing!
- and even then……

10

ATOMIC directive
• Used to protect a single update to a shared variable.
• Applies only to a single statement.
• Syntax:
Fortran: !$OMP ATOMIC

statement

where statement must have one of these forms:
x = x op expr, x = expr op x, x = intr (x, expr) or
x = intr(expr, x)
op is one of +, *, -, /, .and., .or., .eqv., or .neqv.
intr is one of MAX, MIN, IAND, IOR or IEOR

11

ATOMIC directive (cont)
C/C++: #pragma omp atomic

statement
where statement must have one of the forms:
x binop = expr, x++, ++x, x--, or --x
and binop is one of +, *, -, /, &, ^, <<, or >>

• Note that the evaluation of expr is not atomic.
• May be more efficient than using CRITICAL directives, e.g. if

different array elements can be protected separately.
• No interaction with CRITICAL directives

12

ATOMIC directive (cont)
Example (compute degree of each vertex in a graph):

#pragma omp parallel for
for (j=0; j<nedges; j++){

#pragma omp atomic
degree[edge[j].vertex1]++;

#pragma omp atomic
degree[edge[j].vertex2]++;

}

13

Other atomic forms
• Sometimes we may wish to enforce atomic behaviour for

operations other than updates

#pragma omp atomic read
v = x;

#pragma omp atomic write
x = expr;

#pragma omp atomic capture
{v = x; x binop= expr;}

!$omp atomic read
v = x

!$omp atomic write
x = expr

!$omp atomic capture
v = x
x = x op expr

!$omp end atomic

14

Example: producer-consumer pattern
Thread 0

a = foo();
#pragma omp flush
#pragma omp atomic write
flag = 1;
#pragma omp flush

Thread 1

#pragma omp flush
while (!myflag){
#pragma omp flush
#pragma omp atomic read

myflag = flag;
}
#pragma omp flush
b = a;

To be strictly correct we should use atomics to avoid the
race condition on flag.

15

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the
material under the following terms: You must give appropriate credit, provide a link to the
license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their permission
before reusing these images.

16

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

