
MPI Internals

Advanced Parallel Programming

Overview

• MPI Library Structure

• Point-to-point

• Collectives

• Group/Communicators

• Single-sided

2

MPI Structure

• Like any large software package MPI implementations need to be

split into modules.

• MPI has a fairly natural module decomposition roughly following the

chapters of the MPI Standard.

- Point to Point

- Collectives

- Groups Contexts Communicators

- Process Topologies

- Process creation

- One Sided

- MPI IO

• In addition there may be hidden internal modules e.g.

- ADI encapsulating access to network

3

Point to Point

• Point to point communication is the core of most MPI

implementations.

• Collective calls are usually (but not always) built from

point to point calls.

• MPI-IO usually built on point to point

- Actually almost all libraries use the same ROMIO implementation.

• Large number of point-to-point calls exist but these can all

be built from a smaller simpler core set of functions (ADI).

4

MPI communication modes

• MPI defines multiple types of send
- Buffered

• Buffered sends complete locally whether or not a matching receive has been
posted. The data is “buffered” somewhere until the receive is posted. Buffered
sends fail if insufficient buffering space is attached.

- Synchronous
• Synchronous sends can only complete when the matching receive has been

posted

- Ready
• Ready sends can only be started if the receive is known to be already posted

(its up to the application programmer to ensure this) This is allowed to be the
same as a standard send.

- Standard
• Standard sends may be either buffered or synchronous depending on the

availability of buffer space and which mode the MPI library considers to be the
most efficient. Application programmers should not assume buffering or take
completion as an indication the receive has been posted.

5

MPI messaging semantics

• MPI requires the following behaviour for messages
- Ordered messages

• Messages sent between 2 end points must be non-overtaking and a receive
calls that match multiple messages from the same source should always match
the first message sent.

- Fairness in processing

• MPI does not guarantee fairness (though many implementations attempt to)

- Resource limitations

• There should be a finite limit on the resources required to process each
message

- Progress

• Outstanding communications should be progressed where possible. In practice
this means that MPI needs to process incoming messages from all
sources/tags independent of the current MPI call or its arguments.

• These influence the design of MPI implementations.

6

Message Progression

 if (rank == 1) MPI_Irecv (&y, 1,

 MPI_INT, 0, tag, comm, &req);

 if (rank == 0) MPI_Ssend(&x, 1,

 MPI_INT, 1, tag, comm);

 MPI_Barrier(comm);

 if (rank == 1) MPI_Wait(&req, &status);

• Potential problem if rank 1 does nothing but sit in barrier …

- Especially if there is only one thread, which is the default situation

7

Blocking/Non-blocking
• MPI defines both blocking and non-blocking calls.

• Most implementations will implement blocking messages as a special case

of non-blocking

- While the application may be blocked the MPI library still has to progress all

communications while the application is waiting for a particular message.

- Blocking calls often effectively map onto pair of non-blocking send/recv and a

wait.

- Though low level calls can be used to skip some of the argument checking.

• MPI standard also defines persistent communications

- These are like non-blocking but can be re-run multiple times.

- Advantage is that argument-checking/data-type-compilation only needs to be

done once.

- Again can often be mapped onto the same set of low level calls as blocking/non-

blocking.

8

Persistence
• MPI standard also defines persistent communications

- These are like non-blocking but can be re-run multiple times.

• Advantage is that argument-checking and data-type
compilation only needs to be done once.

- Again can often be mapped onto the same set of low level calls as

blocking/non-blocking.

MPI_Send() {

 MPI_Isend(...,&r);

 MPI_Wait(r);

}

MPI_Isend(...,&r) {

 MPI_Send_init(..., &r);

 MPI_Start(r);

}

9

Derived data-types
• MPI defines a rich set of derived data-type calls.

• In most MPI implementations, derived data-types are

implemented by generic code that packs/unpacks data to/from

contiguous buffers that are then passed to the ADI calls.

• This generic code should be reasonably efficient but simple

application level copy loops may be just as good in some

cases.

• Some communication systems support some simple non-

contiguous communications

- Usually no more than simple strided transfer.

- Some implementations have data-type aware calls in the ADI to allow

these cases to be optimised.

- Though default implementation still packs/unpacks and calls contiguous

data ADI.

10

Protocol messages

• All MPI implementations need a mechanism for delivering
packets of data (messages) to a remote process.
- These may correspond directly to the user’s MPI messages or they may

be internal protocol messages.

• Whenever a process sends an MPI message to a remote

process a corresponding initial protocol message (IPM) must

be sent

- Minimally, containing the envelope information.

- May also contain some data.

• Many implementations use a fixed size header for all messages

- Fields for the envelope data

- Also message type, sequence number etc.

11

Message Queues
• If the receiving process has already issued a matching receive,

the message can be processed immediately
- If not then the message must be stored in a foreign-send queue for

future processing.

• Similarly, a receive call looks for matching messages in the

foreign-send queue
- In no matching message found then the receive parameters are stored in

a receive queue.

• In principle, there could be many such queues for different

communicators and/or senders.
- In practice, easier to have a single set of global queues

- It makes wildcard receives much simpler and implements fairness

12

Message protocols
• Typically MPI implementations use different underlying

protocols depending on the size of the message.
- Reasons include, flow-control and limiting resources-per-message

• The simplest of these are
- Eager

- Rendezvous

• There are many variants of these basic protocols.

13

Eager protocol

• The initial protocol message contains the full data for the
corresponding MPI message.

• If there is no matching receive posted when IPM arrives then

data must be buffered at the receiver.

• Eager/Buffered/Standard sends can complete as soon as the

initial protocol message has been sent.

• For synchronous sends, an acknowledge protocol message is

sent when the message is matched to a receive. Ssend can

complete when this is received.

14

Resource constraints for eager protocol

• Eager protocol may require buffering at receiving process.

• This violates the resource semantics unless there is a limit on

the size of message sent using the eager protocol.

• The exception is for ready messages.
- As the receive is already posted we know that receive side buffering will

not be required.

- However, implementations can just map ready sends to standard sends.

15

Rendezvous protocol

• IPM only contains the envelope information, no data.

• When this is matched to a receive then a ready-to-send

protocol message is returned to the sender.

• Sending process then sends the data in a new message.

• Send acts as a synchronous send (it waits for matching

receive) unless the message is buffered on the sending

process.

• Note that for very large messages where the receive is posted

late Rendezvous can be faster than eager because the extra

protocol messages will take less time than copying the data

from the receive side buffer.

16

MPI performance

• When MPI message bandwidth is plotted against message size
it is quite common to see distinct regions corresponding to the
eager/rendezvous protocols

17

Size

T
im

e

Other protocol variants
• Short message protocol

- Some implementations use a standard size header for all messages.

- This header may contain some fields that are not defined for all types of

protocol message.

- Short message protocol is a variant of eager protocol where very small

messages are packed into unused fields in the header to reduce overall

message size.

• DMA protocols

- Some communication hardware allows Direct Memory Access (DMA)

operations between different processes that share memory.

- Direct copy of data between the memory spaces of 2 processes.

- Protocol messages used to exchange addresses and data is copied direct

from source to destination. Reduces overall copy overhead.

- Some systems have large set-up cost for DMA operations so these are

only used for very large messages.

18

Collective Communication

• Collective communication routines are sometimes built on

top of MPI point to point messages.

- In this case the collectives are just library routines.

- You could re-implement them yourself. But:

• The optimal algorithms are quite complex and non-intuitive.

• Hopefully somebody else will optimise them for each platform.

• There is nothing in the API that requires this however.

- The collective routines give greater scope to library developers to

utilise hardware features of the target platform.

• Barrier synchronisation hardware

• Hardware broadcast/multicast

• Shared memory nodes

• etc.

19

Collective algorithms

• There are many possible ways of implementing collectives.

- Best choice depends on the hardware.

• For example consider MPI_Allreduce

• Good first attempt is to build a binary tree of processors.

- Completes in O(log2(P)) communication steps.

• Data is sent up the tree with partial combine at each step

• Result is then passed (broadcast) back down tree.

- 2 * log2(P) steps in total.

• If network can broadcast (includes shared memory) then result can be

distributed in a single step.

• Note that most processors spend most of the time waiting.

- For a vector all-reduce can be better to split the vector into segments and

use multiple (different) trees for better load balance.

- Also, what about a binomial tree or a hypercube algorithm?

20

Binary Tree

• From http://mathworld.wolfram.com/

21

Groups and Communicators

• Logically communicators are independent communication

domains

- Could use separate message queues etc. to speed up matching

process.

- In practice most application codes use very few communicators at

a time.

• Most MPI implementations use a “native” processor

addressing for the ADI

- Often the same as MPI_COMM_WORLD ranks.

- Communicators/Groups generic code at the upper layers of the

library.

- Need an additional hidden message tag corresponding to

communicator id (often called a context id).

22

Process Topologies

• Topology code gives the library writer the opportunity to

optimise process placement w.r.t. machine topology.

• In practice, some implementations use generic code and

don't attempt to optimise.

• Major implementations make some attempt to optimise.

- May not do a very good job in all situations.

23

Single Sided

• MPI-2 added single sided communication routines.

• Very complex set of APIs (also quite ambiguous in some

places)

• Complexity is necessary for correctness with least

restrictions

- In practice, use simpler (and more restrictive) rules-of-thumb

• Most major MPI implementations now support MPI-3

memory model and single-sided operations.

- Probably only want to use them if it makes programming easier.

• For many applications, single-sided will perform slower

than normal point to point.

24

Implementing Single sided

• Like most of the MPI standard the single-sided calls allow great

freedom to the implementer

• Single-sided operations must only target addresses in previously

created “windows”

- Creation operation is collective.

- This is to allow MPI to map the window into the address space of other

processors if HW allows.

• The single sided calls consist of RMA calls and synchronisation calls.

- The results of the RMA calls are not guaranteed to be valid until

synchronisation takes place.

- In the worst case, MPI is allowed to just remember what RMA calls were

requested then perform the data transfers using point-to-point calls as part

of the synchronisation.

- Naturally implementable if hardware supports RDMA, e.g. Infiniband

25

Summary

• There are many ways of specifying MPI communication

• Which one is best (fastest) depends on the implementation

- Which MPI library are you using?

- Which hardware are you using?

- Which options are you using?

• Performance portability is, therefore, really hard

- Implement lots of different methods

- Test all of them in each new situation

- Pick the best one for each situation

26

