
Profiling and Analysis

Tools
Advanced Parallel Programming

WHAT’S THE PROBLEM?

Why do we need tools?

Reminder
Techniques for finding performance problems in a large code:

• Manual investigation, looking at the code and machine

• Benchmarking, running and timing the code on a machine

• Profiling tools, sampling and tracing the code on a machine

• Analysis tools, auto-magic wizardry

3

Simple machine schematic

• https://computing.llnl.gov/tutorials/ibm_sp/

4

https://image.slidesharecdn.com/ccgrid11ibhselast-160218070646/95/designing-cloud-

and-grid-computing-systems-with-infiniband-and-highspeed-ethernet-39-638.jpg

5

Intel E2607 v3 schematic

http://www.anandtech.com/show/8584/intel-xeon-e5-2687w-v3-and-e5-2650-v3-review-

haswell-ep-with-10-cores

6

Node hardware

https://www.open-mpi.org/projects/hwloc/

7

Network tolopogy

Dragonfly topology

http://www.nersc.gov/users/computational-

systems/edison/configuration/interconnect/

Fat tree topology

 https://slurm.schedmd.com/topology.html

8

http://www.nersc.gov/users/computational-systems/edison/configuration/interconnect/
http://www.nersc.gov/users/computational-systems/edison/configuration/interconnect/
http://www.nersc.gov/users/computational-systems/edison/configuration/interconnect/
http://www.nersc.gov/users/computational-systems/edison/configuration/interconnect/
https://slurm.schedmd.com/topology.html
https://slurm.schedmd.com/topology.html

Some useful links
• Information about ARCHER hardware layout:

- http://www.archer.ac.uk/about-archer/hardware/

• Intel ‘ark’ information for an example processor:

- http://ark.intel.com/products/75283/Intel-Xeon-Processor-E5-2697-v2-

30M-Cache-2_70-GHz

• Information about Cirrus hardware:

- http://cirrus.readthedocs.io/en/latest/hardware.html

- https://www.sgi.com/products/servers/ice/ice_xa.html

9

http://www.archer.ac.uk/about-archer/hardware/
http://www.archer.ac.uk/about-archer/hardware/
http://www.archer.ac.uk/about-archer/hardware/
http://www.archer.ac.uk/about-archer/hardware/
http://ark.intel.com/products/75283/Intel-Xeon-Processor-E5-2697-v2-30M-Cache-2_70-GHz
http://ark.intel.com/products/75283/Intel-Xeon-Processor-E5-2697-v2-30M-Cache-2_70-GHz
http://ark.intel.com/products/75283/Intel-Xeon-Processor-E5-2697-v2-30M-Cache-2_70-GHz
http://ark.intel.com/products/75283/Intel-Xeon-Processor-E5-2697-v2-30M-Cache-2_70-GHz
http://ark.intel.com/products/75283/Intel-Xeon-Processor-E5-2697-v2-30M-Cache-2_70-GHz
http://ark.intel.com/products/75283/Intel-Xeon-Processor-E5-2697-v2-30M-Cache-2_70-GHz
http://ark.intel.com/products/75283/Intel-Xeon-Processor-E5-2697-v2-30M-Cache-2_70-GHz
http://ark.intel.com/products/75283/Intel-Xeon-Processor-E5-2697-v2-30M-Cache-2_70-GHz
http://ark.intel.com/products/75283/Intel-Xeon-Processor-E5-2697-v2-30M-Cache-2_70-GHz
http://ark.intel.com/products/75283/Intel-Xeon-Processor-E5-2697-v2-30M-Cache-2_70-GHz
http://ark.intel.com/products/75283/Intel-Xeon-Processor-E5-2697-v2-30M-Cache-2_70-GHz
http://ark.intel.com/products/75283/Intel-Xeon-Processor-E5-2697-v2-30M-Cache-2_70-GHz
http://ark.intel.com/products/75283/Intel-Xeon-Processor-E5-2697-v2-30M-Cache-2_70-GHz
http://ark.intel.com/products/75283/Intel-Xeon-Processor-E5-2697-v2-30M-Cache-2_70-GHz
http://ark.intel.com/products/75283/Intel-Xeon-Processor-E5-2697-v2-30M-Cache-2_70-GHz
http://ark.intel.com/products/75283/Intel-Xeon-Processor-E5-2697-v2-30M-Cache-2_70-GHz
http://ark.intel.com/products/75283/Intel-Xeon-Processor-E5-2697-v2-30M-Cache-2_70-GHz
http://ark.intel.com/products/75283/Intel-Xeon-Processor-E5-2697-v2-30M-Cache-2_70-GHz
http://ark.intel.com/products/75283/Intel-Xeon-Processor-E5-2697-v2-30M-Cache-2_70-GHz
http://cirrus.readthedocs.io/en/latest/hardware.html
http://cirrus.readthedocs.io/en/latest/hardware.html
https://www.sgi.com/products/servers/ice/ice_xa.html
https://www.sgi.com/products/servers/ice/ice_xa.html

WHY DOES THIS MATTER?

OK, hardware is complicated – so what?

Task mapping
• On most systems, the time taken to send a message between

two processors depends on their location on the interconnect.

• Latency depends on number of hops between processors

• Bandwidth might vary between different pairs of processors

• In an SMP cluster, communication is normally faster (lower

latency and higher bandwidth) inside a node (using shared

memory) than between nodes (using the network)

11

• Communication latency

often behaves as a fixed

cost + term proportional to

number of hops.

12

• The mapping of MPI tasks to processors can have an effect

on performance

• Want to have tasks which communicate with each other a lot

close together in the interconnect.

• No portable mechanism for arranging the mapping.

- e.g. on Cray XE/XC supply options to aprun

• Can be done (semi-)automatically:

- run the code and measure how much communication is done between

all pairs of tasks

- tools can help here

- find a near optimal mapping to minimise communication costs

13

• On systems with no ability to change the mapping, we can

achieve the same effect by create communicators

appropriately.

- assuming we know how MPI_COMM_WORLD is mapped

• MPI_CART_CREATE has a reorder argument

- if set to true, allows the implementation to reorder the task to give a

sensible mapping for nearest-neighbour communication

- unfortunately many implementations do nothing, or do strange, non-

optimal re-orderings!

• … or use MPI_COMM_SPLIT

14

Custom cluster – no tools
• Basic requirement to ‘pin’ processes/threads

- Set a “CPU mask” or similar operating system function call

- Restrict each application thread to a single physical core

• Always possible to schedule one process/thread per core

- Ensure different runtimes play well together (current research topic)

- Use as many (or as few) processes as you want

- Get machine topology by measuring communication performance

- Chose which processes to use, e.g. based on physical location

• Analysis is mostly guesswork with trial and error

- Create a small (short time to completion) representative test-case

- Try to be systematic and cover the available parameter space

- Keep good records of your tests and the results

• OR install and use tools

15

WHAT TOOLS ARE THERE?

What can tools do?

Uses for debugging tools
• Where did my program crash?

- Obtain a stack trace at the point of failure

- Examine ‘core’ file using gdb (or similar)

- Use a debugger tool, e.g. Allinea DDT, many others

• Where are the memory leaks in my program?

- Use ‘valgrind’

• Why does my program get the wrong answer?

- Use ‘printf’/’write’ statements to verify variable values

- Use an interactive debug tool to step through code, e.g. DDT/others

17

Uses for performance tools
• Change process placement to optimise communication

- Discover and map hardware topology, e.g. hwloc

- Specify rank mapping, e.g. ‘aprun’ settings or MPI communicators

• Discover ‘hot-spots’ – code that takes up most runtime

- Identify areas most in need of (greatest impact from) optimisation

- Profiling tools, trace first, then selectively instrument

- CrayPAT, Allinea MAP, Scalasca, Intel vTune, TAU, many others

• Discover sub-optimal use of CPU/memory components

- Access hardware counters, e.g. Performance API (PAPI)

- Re-order calculation/communication, i.e. algorithm code changes

• Discover sub-optimal communication patterns

- Infer the problem from other performance evidence, plus intuition

- Alter calculation/communication, i.e. algorithm code changes

18

What tools are available?
• Tools on ARCHER:

- http://www.archer.ac.uk/about-archer/software/

- “Debugging Tools – DDT, Cray ATP, GDB”

- “Profiling Tools – CrayPAT”

• Tools on Cirrus:

- Intel vTune (discovered by doing “module avail”)

• A survey of tools on another machine (Aurora):

- http://www.paradyn.org/petascale2015/slides/2015_0804_scalableTools

_rashawn_knapp_presentation_final.pdf

 19

http://www.archer.ac.uk/about-archer/software/
http://www.archer.ac.uk/about-archer/software/
http://www.archer.ac.uk/about-archer/software/
http://www.paradyn.org/petascale2015/slides/2015_0804_scalableTools_rashawn_knapp_presentation_final.pdf
http://www.paradyn.org/petascale2015/slides/2015_0804_scalableTools_rashawn_knapp_presentation_final.pdf

20

Summary

• Tools can do *anything* the tool developer can dream up

• There are some well-known tools and many less well-known

• But no standard set of tools that will be available everywhere

• Find out what tools are available on systems you can access

• Read the documentation for each system

• Investigate on the machine itself, e.g. ‘module avail’

• Use tools that are already installed, e.g. by sys admin team

• OR download and install additional tools yourself

21

