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1. Aims 
 
This exercise takes an example from one of the most common applications of HPC 
resources: Fluid Dynamics. We will look at how a simple fluid dynamics problem can be run 
on a system like ARCHER and how varying the number of processes it runs on and the 
problem size affect the performance of the code. This will require a set of simulations to be 
run and performance metrics to be recorded and plotted on a graph. 
 
The CFD program differs from the more straightforward task farm in that the problem requires 
more than source-worker-sink communications. Here the workers are in regular 
communication throughout the calculation. This exercise aims to introduce: 
 

 Grids 

 Communications – Halos 

 Performance metrics 

2. Fluid Dynamics 
 
Fluid Dynamics is the study of the mechanics of fluid flow, liquids and gases in motion. This 
encompasses aero- and hydrodynamics. It has wide ranging applications, from theoretical 
studies of flow to engineering problems such as vessel and structure design, and plays an 
important role in weather modelling. Simulating and solving fluid dynamic problems requires 
large computational resources. 
 
Fluid dynamics is an example of continuous system which can be described by Partial 
Differential Equations. For a computer to simulate these systems, the equations must be 
discretised onto a grid. If this grid is regular, then a finite difference approach can be used. 
Using this method means that the value at any point in the grid is updated using some 
combination of the neighbouring points. 
 
Discretisation is the process of approximating a continuous (i.e. infinite-dimensional) 
problem by a finite-dimensional problem suitable for a computer. This is often accomplished 
by putting the calculations into a grid or similar construct. 

2.1. The problem 

In this exercise the finite difference approach is used to determine the flow pattern of a fluid in 
a cavity. For simplicity, the liquid is assumed to have zero viscosity which implies that there 
can be no vortices (i.e. no whirlpools) in the flow. The cavity is a square box with an inlet on 
one side and an outlet on another as shown below in figure 1. 
 

 
Figure 1 - The cavity 
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3. Mathematical formulation and the Jacobi algorithm 
solution 

 
In two dimensions it is easiest to work with the stream function Ψ (see below for how this 

relates to the fluid velocity). For zero viscosity Ψ satisfies the following equation: 
 

𝛻2Ψ =
𝜕2Ψ

𝜕𝑥2
+  

𝜕2Ψ

𝜕𝑦2
= 0 

 
The finite difference version of this equation is: 
 

Ψ𝑖−1,𝑗 +  Ψ𝑖+1,𝑗 + Ψ𝑖,𝑗−1  +  Ψ𝑖,𝑗+1 −  4Ψ𝑖,𝑗 = 0 

 
With the boundary values fixed, the stream function can be calculated for each point in the 
grid by averaging the value at that point with its four nearest neighbours. The process 
continues until the algorithm converges on a solution which stays unchanged by the 
averaging process. This simple approach to solving a PDE is called the Jacobi Algorithm. 
 
In order to obtain the flow pattern of the fluid in the cavity we want to compute the velocity 
field ũ. The x and y components of ũ are related to the stream function by: 
 

𝑢𝑥 =  
𝜕Ψ

𝜕𝑦
=  

1

2
(Ψ𝑖,𝑗+1 −  Ψ𝑖,𝑗−1 ) 

 

𝑢𝑦 = − 
𝜕Ψ

𝜕𝑥
= − 

1

2
(Ψ𝑖+1,𝑗 −  Ψ𝑖−1,𝑗 ) 

 
This means that the velocity of the fluid at each grid point can also be calculated from the 
surrounding grid points. 

4. Pseudocode for the Jacobi algorithm 
 
The outline of the algorithm for calculating the velocities is as follows: 

 

set the boundary values for Ψ 
while (convergence == FALSE) do 

    for each interior grid point do 

        update Ψ by averaging with its 4 nearest neighbours 
    end do 

    check for convergence 

end do 

 

for each interior grid point do 

    calculate 𝑢𝑥 

    calculate 𝑢𝑦 

end do 

 

For simplicity, here we simply run the calculation for a fixed number of iterations; a real 
simulation would continue until some chosen accuracy was achieved. 

4.1. Breaking up the problem to solve it in parallel 

The calculation of the velocity of the fluid as it flows through the cavity proceeds in two 
stages: 

 Calculate the stream function Ψ 

 Use this to calculate the x and y components of the velocity 



5 

 

 
Both of these stages involve calculating the value at each grid point by combining it with the 
value of its four nearest neighbours. Thus the same amount of work is involved in calculating 
each grid point, making it ideal for the regular domain decomposition approach. Figure 2 
shows how a two-dimensional grid can be broken up into smaller grids to be handled by 
individual processes. 
 

 
Figure 2 - Breaking up the problem through domain decomposition 

This approach can be generalised to include cases where slices or irregular subsections of 
grids are sent to individual processes and the results are collated at the end of a calculation 
cycle. 

4.2. Communicating through halo swaps 

 
Figure 3 - Halo: Process A and Process B 

Splitting the grid into smaller grids introduces a problem computing values at points on the 
edges of subgrids, as this requires the values of neighbouring points, which are part of a 
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neighbouring subgrid whose values are being computed by a different process. This means 
that some form of communication between processes is needed. 
 
One way to tackle this problem is to add a boundary layer to each edge of each subgrid that 
adjoins another subgrid. These boundary layers are not updated by the local process 
updating the interior points of the subgrid, but instead by the process working on the 
neighbouring subgrid. The boundary layer in the neighbouring subgrid is in turn updated by 
the local process. These boundary layers are generally known as halos. An example of this is 
show in Figure 3. 
 
In order to keep the halos up to date, a halo swap must be carried out. When an element in 
process B which adjoins the boundary layer with process A is updated and process A has 
been updating, the halo must be swapped to ensure process B uses accurate data. This 
means that a communication between processes must take place in order to swap the 
boundary data. This halo swap introduces communications which, if the grid is split into too 
many processes or the size of data transfers is very large, can begin to dominate the runtime 
instead of actual processing work. Part of this exercise is to look at how the number of 
processes affects the runtime for given problem sizes, and evaluate what this means for 
speed up and efficiency. 

4.3. One-dimensional domain decomposition for CFD example 

In the parallel versions of the code provided for this exercise we have only decomposed the 
problem in one dimension, namely the y-dimension (Fortran) or x-dimension (C). This means 
that the problem is sliced up into a series of rectangular strips. Although for a real problem the 
domain would probably be split up in both dimensions as in Figure 2, splitting across a single 
dimension makes programming and understanding the code significantly easier. Each 
process only needs to communicate with a maximum of two neighbours, swapping halo data 
up and down (or left and right). 

5. Exercises 

5.1. Compilation 

Use wget to copy the file cfd.tar.gz from the ARCHER web page for the course to your 
personal directory on /work/ on ARCHER, as for the previous exercises. Now unpack the file 
and compile the code provided for the CFD example as described below. We have provided 
serial versions (directories C-SER / F-SER) as well as parallel versions using the domain 
decomposition approach and MPI for halo swap communications as described above 
(directories C-MPI / F-MPI). After compilation, an executable file called cfd will have been 
created in each case. 
 
You are free to choose to work with either the C or Fortran versions – below we use Fortran 
for illustration, but the procedure is the same for the C versions. 

Input: 

 tar -zxvf cfd.tar.gz 

Output:  

 cfd/ 

 cfd/F-MPI/ 

 cfd/F-SER/ 

 cfd/F-SER/boundary.f90 

 cfd/F-SER/cfd.f90 

 cfd/F-SER/cfd.pbs 

 ... 

   

  cfd/F-MPI/boundary.f90 

  cfd/F-MPI/cfd.f90 

  cfd/F-MPI/cfd.pbs 

  cfd/F-MPI/cfdio.f90 

  cfd/F-MPI/jacobi.f90 

  cfd/F-MPI/Makefile 

   

   



7 

 

 

5.2. Run the program 

As long as you do not run for a long time, e.g. for less than a minute, you can execute the 
serial executable on the login node directly from the command line as follows: 

 
Where you should replace <scale> and <numiter> by integers with the following meaning: 

 <scale>: a scale factor that is used to set the size of the grid (see below) 

 <numiter>: how many iterations to run the Jacobi algorithm for. 
 
The minimum problem size (scale factor = 1) is taken as a 32 x 32 grid. The actual problem 
size can be chosen by scaling this basic size, for example with a scale factor of 4 then it will 
use a 128 x 128 grid. After the executable has finished running the output on screen should 
look something like this (depending on the exact parameters): 

Input: 

 cd cfd/F-SER 

 make 

Output: 

 ftn -g -c boundary.f90 

 ftn -g -c jacobi.f90 

 ftn -g -c cfdio.f90 

 ftn -g -c cfd.f90 

 ftn -g -o cfd boundary.o cfd.o cfdio.o jacobi.o  

   

 

Input: 

 cd cfd/F-MPI 

 make 

Output: 

 ftn -g -c boundary.f90 

 ftn -g -c jacobi.f90 

 ftn -g -c cfdio.f90 

 ftn -g -c cfd.f90 

 ftn -g -o cfd boundary.o cfd.o cfdio.o jacobi.o  

   

 

 ./cfd <scale> <numiter> 

   

 

./cfd 4 5000 

 Scale factor =   4, iterations =   5000 

 Irrotational flow 

 Running CFD on  128 x  128 grid in serial  

 

 Starting main loop ... 

 

 completed iteration         1000 

 completed iteration         2000 

 completed iteration         3000 

 completed iteration         4000 

 completed iteration         5000 

 

 ... finished 

 

 After      5000 iterations, error is  0.1872E-03 

 Time for   5000 iterations was  0.4869     seconds 

 Each individual iteration took  0.9737E-04 seconds 

 

 Writing output file ... 

  ... finished 

 CFD completed 
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The code also produces some graphical output in the form of a gnuplot file cfd.plt. Provided 
you have logged in to ARCHER with X11 forwarding turned on (e.g. ssh -X from the 
command line) you can view this as follows:  

which should produce a picture similar to Figure 4. 
 

 
Figure 4 - Output image 

If the fluid is flowing down the right-hand edge then along the bottom, rather than through the 
middle of the cavity, then this is an indication that the Jacobi algorithm has not yet converged. 
Convergence requires more iterations on larger problem sizes. 

5.3. Running in parallel 

Use emacs or your preferred editor to look at the cfd.pbs batch script inside the F-MPI 
directory: 

 
The argument to aprun has the following meaning: 

 -n 4: run the code on 4 processes; 
 
The arguments to cfd are the same as in the serial case, with the scale factor now setting the 
size of the overall grid (which will be decomposed into smaller subgrids). Varying the number 
of processes and scale factor allows us to investigate Amdahl's and Gustafson's laws. The 
number of iterations is not particularly important as we are interested in the time per iteration. 
You can increase the number of iterations to ensure that the code does not run too fast on 
large numbers of processes, or decrease it so it is not too slow for large problem sizes. Three 
things to note: 
 

 gnuplot -persist cfd.plt 

   

 

#!/bin/bash --login 

 

#PBS -l select=1 

#PBS -l walltime=00:05:00 

#PBS -A y14 

#PBS -N cfd 

 

#Change to directory that the job was submitted from 

cd $PBS_O_WORKDIR 

 

aprun -n 4 ./cfd 4 5000 
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 For more than 24 processes (the size of a single node) then you will need to select 
multiple nodes, e.g for 96 processes then specify: #PBS -l select=4 

 The code assumes the problem size decomposes exactly onto the process grid. If 
this is not the case (e.g. scale factor = 2 with 7 processes, since 7 is not a divisor of 
64) it will complain and exit. 

 Again if the output picture looks strange then you may not have used a sufficient 
number of iterations to converge to the solution. This is not a problem in terms of the 
performance figures, but it is worth running with more iterations just to check that the 
code is functioning correctly 

 
Once you have run the job via the PBS batch system, the output file should look something 
like this (depending on the exact parameters): 

5.4. Performance Evaluation 

The next part of this exercise will be to determine what the best configuration for a group of 
problems sizes in the CFD code would be. This will be worked out using two measures: 
speed-up and efficiency. 

5.4.1. Speedup 
 
The speedup of a parallel code is how much faster the parallel version runs compared to a 
non-parallel version. Taking the time to run the code on 1 process is T1 and to run the code 
on P processes is TP , the speed-up S is found by: 

𝑆 =  
𝑇1

𝑇𝑝

 

5.4.2. Efficiency 
 
Efficiency is how the well the resources (available processing power in this case) are being 
used. This can be thought of as the speed-up (or slow-down) per process. Efficiency E can be 
defined as: 

𝐸 =
𝑆

𝑃
=  

𝑇1

𝑃𝑇𝑝

 

 
where E = 1.0 means 100% efficiency, i.e. perfect scaling. 

 Scale factor =   4, iterations =   5000 

 Irrotational flow 

 Running CFD on  128 x  128 grid using 4 process(es) 

 

 Starting main loop ... 

 

 completed iteration         1000 

 completed iteration         2000 

 completed iteration         3000 

 completed iteration         4000 

 completed iteration         5000 

 

 ... finished 

 

 After      5000 iterations, error is  0.1872E-03 

 Time for   5000 iterations was  0.1296     seconds 

 Each individual iteration took  0.2592E-04 seconds 

 

 Writing output file ... 

  ... finished 

 CFD completed 
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5.4.3. Doing the work 
 
The two main evaluation points: 
 

 How do the speed-up and efficiency vary as the number of processes is increased? 

 Does this change as the problem size is varied?  
 
To investigate the speed-up and parallel efficiency the code should be run using the same 
problem size but with varying numbers of processes. Calculate the speed-up and efficiency 
(tables are provided overleaf for this) and plot a graph of the speed-up against the number of 
processes. Is there any apparent pattern, e.g. does it follow Amdahl's law? 
 
Now choose a different problem size and repeat the exercise. To increase the problem size, 
increase the scale factor; to decrease the size, decrease the scale factor. For example, 
setting scale factor = 2 will give a problem size of 64x64; scale factor = 6 gives a size of 
192x192. 
 
What is the effect of problem size the parallel scaling of the code? 
 
Note that, for large numbers of processes, you may have to increase the number of iterations 
so that the code runs for a reasonable length of time -- it is difficult to interpret timings 
quantitatively if a program runs too quickly, e.g. for much less than a second. The time per 
iteration, however, should be independent of the number of iterations as the internal timing 
excludes all the IO overheads. 
 
You can place multiple consecutive aprun commands in a single PBS script, i.e. you can 
perform runs on many different process counts using a single qsub command. 

1) Problem size (scalefactor) -________  Iterations = _______ 

No. of processes Time per iteration Speedup Efficiency 

1    

2    

4    

8    

16    

32    

64    

128    

    

    

2) Problem size (scalefactor) -________  Iterations = _______ 

No. of processes Time per iteration Speedup Efficiency 

1    

2    

4    

8    

16    

32    

64    

128    
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3) Problem size (scalefactor) -________  Iterations = _______ 

No. of processes Time per iteration Speedup Efficiency 

1    

2    

4    

8    

16    

32    

64    

128    

    

    

4) Problem size (scalefactor) -________  Iterations = _______ 

No. of processes Time per iteration Speedup Efficiency 

1    

2    

4    

8    

16    

32    

64    

128    

    

    

5) Problem size (scalefactor) -________  Iterations = _______ 

No. of processes Time per iteration Speedup Efficiency 

1    

2    

4    

8    

16    

32    

64    

128    

    

    

6) Problem size (scalefactor) -________  Iterations = _______ 

No. of processes Time per iteration Speedup Efficiency 

1    

2    

4    

8    

16    

32    

64    

128    
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6. Compiler Investigation 
 
We will now investigate how different compilers and options affect performance. 

6.1. Changing compilers on ARCHER 

On ARCHER, the C compiler is always called cc and the Fortran compiler is always called ftn. 
However, what compiler this actually points to is determined by what module you have 
loaded. For example, to switch from the default (Cray) compiler to the Intel compiler. 
 

module switch PrgEnv-cray PrgEnv-intel 

make clean 

make 

 
Here make clean ensures all compiled code is removed so the new code will be built with the 
new compiler. This also removes output files velocity.dat, colourmap.dat and cfd.plt, so to 
keep these you should rename them.  The GNU compiler module is called PrgEnv-gnu. 

6.2. Exercises 

Here are a number of suggestions: 
 

 By default, the code is built with the -g debugging option. Edit the Makefile to remove 
this and recompile - what is the effect on performance? 

 What is the difference between the performance of the code using the three different 
compilers (Cray, Intel and GNU) with no compiler options? 

 Is the performance of the C and Fortran versions significantly different? 

 It is not really fair to compare compiler performance using default optimisation 
options: one compiler may simply have higher default settings than another. Using 
the options suggested in ``Useful compiler options'',  
http://www.archer.ac.uk/documentation/user-guide/development.php, compare the 
best performance you can get with each compiler. 

 

 The code can actually simulate fluids with a finite viscosity which gives more realistic 
simulations which include features such as whirlpools. You can pass a third 
parameter to the program, the Reynolds Number Re, which here is effectively the 
input velocity of the fluid. For example, aprun -n 4 ./cfd 4 5000 1.8 sets Re = 1.8 (note 
that the code becomes unstable for values of Re > 3.7).  This increases the 
computation required so the code will be slower, although the actual amount of 
computation is independent of the value of Re. 
 
Investigate the parallel scaling behaviour of the code for some particular value of Re. 
Is it any different from the previous (zero viscosity) case? 
 

 
Figure 5 - Simulation with Re = 1.8 

http://www.archer.ac.uk/documentation/user-guide/development.php

