
Performance of Parallel

IO on Lustre and GPFS
David Henty and Adrian Jackson

(EPCC, The University of Edinburgh)

Charles Moulinec and Vendel Szeremi

(STFC, Daresbury Laboratory

1

ARCHER Training

Courses
Sponsors

Reusing this material

This work is licensed under a Creative Commons Attribution-

NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the

material under the following terms: You must give appropriate credit, provide a link to the

license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their permission

before reusing these images.

3

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

Outline

• Parallel IO problem

• Common IO patterns

• Parallel filesystems

• MPI-IO Benchmark results

• Filesystem tuning

• MPI-IO Application results

• HDF5 and NetCDF

• Conclusions

4

Parallel IO problem

1 2 3 4

1 2 3 4

1 2 3

1 2 3 4

Process 4
Process 2

Process 1

Process 3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

4

5

Parallel Filesystems

(Figure based on Lustre diagram from Cray)

Single logical user file OS/file-system

automatically divides

the file into stripes

6

Common IO patterns
• Multiple files, multiple writers

- each process writes its own file

- numerous usability and performance issues

• Single file, single writer (master IO)

- high usability but poor performance

• Single file, multiple writers

- all processes write to a single file; poor performance

• Single file, collective writers

- aggregate data onto a subset of IO processes

- hard to program and may require tuning

- potential for scalable IO performance

7

Quantifying Performance
• What is good performance on ARCHER?

- Generally see ~500MB/s per OST

- This is the serial limit. If getting that, not achieving parallel I/O

• Always benchmark and quantify bandwidth

- Use the Cray performance tools

• Contention is an issue – can see huge variance in results

- Do multiple runs at different times of day

- Look at best and worst case

• Beware of caching effects on performance

8

Performance – Large Number of Files

“setting striping to 1 has reduced total read time for his 36000 small
files from 2 hours to 6 minutes”

- comment on resolution of an ARCHER helpdesk query.

• User was performing I/O on 36000 separate files of ~300KB with
10000 processes

• Had set parallel striping to maximum possible (48 OSTs / -1)
assuming this would give best performance

• Overhead of querying every OST for every file dominated the access
time

• Moral: more stripes does not mean better performance

9

Performance – Large Number of Files 2

• 15GB consisting of 5500 1.5-4MB files

- Effect of striping on serial “tar” operation:

$> time tar -cf stripe48.tar stripe48

real 31m19.438s

$> time tar -cf stripe4.tar stripe4

real 24m50.604s

$> time tar -cf stripe1.tar stripe1

real 18m34.475s

• ~40% reduction in operation time between 48 and 1 stripe

- Still bottlenecks at MDS. This access pattern is not recommended,

but it is common.

10

Global description: MPI-IO

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

rank 0

(0,0)

rank 1

(0,1)

rank 3

(1,1)

rank 2

(1,0)

rank 1 filetype

rank 1 view of file 3 4 7 8

1 2 3 4 6 7 8 9 10 11 12 13 14 15 16 5 global file

11

Collective IO

• Enables numerous optimisations in principle

- requires global description and participation of all processes

- does this help in practice?

Combine ranks 0 and 1 for single

contiguous read/write to file

Combine ranks 2 and 3 for single

contiguous read/write to file

12

Cellular Automaton Model

• Fortran coarray library for 3D cellular automata microstructure

simulation, Anton Shterenlikht, proceedings of 7th International

Conference on PGAS Programming Models, 3-4 October 2013,

Edinburgh, UK.

13

Benchmark

• Distributed regular 3D dataset across 3D process grid

- local data has halos of depth 1; set up for weak scaling

- implemented in Fortran and MPI-IO

! Define datatype describing global location of local data

call MPI_Type_create_subarray(ndim, arraygsize, arraysubsize, arraystart,

 MPI_ORDER_FORTRAN, MPI_DOUBLE_PRECISION, filetype, ierr)

! Define datatype describing where local data sits in local array

call MPI_Type_create_subarray(ndim, arraysize, arraysubsize, arraystart,

 MPI_ORDER_FORTRAN, MPI_DOUBLE_PRECISION, mpi_subarray, ierr)

! After opening file fh, define what portions of file this process owns

call MPI_File_set_view(fh, disp, MPI_DOUBLE_PRECISION, filetype,

 'native', MPI_INFO_NULL, ierr)

! Write data collectively

call MPI_File_write_all(fh, iodata, 1, mpi_subarray, status, ierr)

14

ARCHER XC30

15

Single file, multiple writers

• Serial bandwidth on ARCHER around 400 to 500 MiB/s

• Use MPI_File_write not MPI_File_write_all

- identical functionality

- different performance

Processes Bandwidth

1 49.5 MiB/s

8 5.9 MiB/s

64 2.4 MiB/s

16

Single file, collective writers

17

Lustre striping

• We’ve done a lot of work to enable (many) collective writers

- learned MPI-IO and described data layout to MPI

- enabled collective IO

- MPI dynamically decided on number of writers

- collected data and aggregates before writing

• ... for almost no benefit!

• Need many physical disks as well as many IO streams

- in Lustre, controlled by the number of stripes

- default number of stripes is 4; ARCHER has around 50 IO servers

• User needs to set striping count on a per-file/directory basis

- lfs setstripe –c -1 <directory> # use maximal striping

18

Cray XC30 with Lustre: 1283 per proc

19

Cray XC30 with Lustre: 2563 per proc

20

Performance Summary

• Serial IO never gets more than about 500 MiB/s

- peak for a single OST

• With default striping, never exceed 2 GiB/s

- 4 stripes = 4 OSTs = 4 x 500 MiB/s

• With full striping, IO bandwith increases with process count

- can achieve in excess of 10 GiB/s

• Collective IO is essential

- replacing MPI_File_Write_all() by MPI_File_write()

disastrous!

- identical functionality but each IO request now processed separately

with file locking

21

BG/Q: #IO servers scales with CPUs

22

Code_Saturne http://code-saturne.org

• CFD code developed by EDF (France)

• Co-located finite volume, arbitrary unstructured meshes,

predictor-corrector

• 350 000 lines of code

- 50% C

- 37% Fortran

- 13% Python

• MPI for distributed-memory (some OpenMP for shared-

memory) including MPI-IO

• Laminar and turbulent flows: k-eps, k-omega, SST, v2f,

RSM, LES models, ...

 23

Code_SATURNE: default settings

• Consistent with

benchmark results

- default striping Lustre

similar to GPFS

24

Code_Saturne: Lustre striping

• Consistent with

benchmark results

- order of magnitude

improvement from

striping

Number of Cores

T
im

e
 (

s
)

30000 40000
0

200

400

600

800

1000

1200

No Stripping Read Input 814MB

No Stripping Write Mesh_Output 742GB

Full Stripping Read Input 814MB

Full Stripping Write Mesh_Output 742GB

MPI-IO - 7.2 B Tetra Mesh

25

Simple HDF5 benchmark: Lustre

26

Further Work

• Non-blocking parallel IO could hide much of writing time

- or use more restricted split-collective functions

- extend benchmark to overlap comms with calculation

• I don’t believe it is implemented in current MPI-IO libraries

- blocking MPI collectives are used internally

• A subset of user MPI processes will be used by MPI-IO

- would be nice to exclude them from calculation

- extend MPI_Comm_split_type() to include something like

MPI_COMM_TYPE_IONODE as well as MPI_COMM_TYPE_SHARED ?

27

Conclusions

• Efficient parallel IO requires all of the following

- a global approach

- coordination of multiple IO streams to the same file

- collective writers

- filesystem tuning

• MPI-IO Benchmark useful to inform real applications

- NetCDF and HDF5 layered on top of MPI-IO

- although real application IO behaviour is complicated

• Try a library before implementing bespoke solutions!

- higher level view pays dividends

28

