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Parallel IO problem 
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Parallel Filesystems 

(Figure based on Lustre diagram from Cray) 

Single logical user file OS/file-system 

automatically divides 

the file into stripes 
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Common IO patterns 
• Multiple files, multiple writers 

- each process writes its own file 

- numerous usability and performance issues 
 

• Single file, single writer (master IO) 

- high usability but poor performance 
 

• Single file, multiple writers 

- all processes write to a single file; poor performance 
 

• Single file, collective writers 

- aggregate data onto a subset of IO processes 

- hard to program and may require tuning 

- potential for scalable IO performance 
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Quantifying Performance 
• What is good performance on ARCHER? 

- Generally see ~500MB/s per OST 

- This is the serial limit. If getting that, not achieving parallel I/O 

 

• Always benchmark and quantify bandwidth 

- Use the Cray performance tools 

 

• Contention is an issue – can see huge variance in results 

- Do multiple runs at different times of day 

- Look at best and worst case 

 

• Beware of caching effects on performance 
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Performance – Large Number of Files 

“setting striping to 1 has reduced total read time for his 36000 small 
files from 2 hours to 6 minutes” 

- comment on resolution of an ARCHER helpdesk query. 

 

• User was performing I/O on 36000 separate files of ~300KB with 
10000 processes 

 

• Had set parallel striping to maximum possible (48 OSTs / -1) 
assuming this would give best performance 

 

• Overhead of querying every OST for every file dominated the access 
time 

 

• Moral: more stripes does not mean better performance 
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Performance – Large Number of Files 2 

• 15GB consisting of 5500 1.5-4MB files 

- Effect of striping on serial “tar” operation: 
 

$> time tar -cf stripe48.tar stripe48 

real    31m19.438s 

 

$> time tar -cf stripe4.tar stripe4 

real    24m50.604s 

 

$> time tar -cf stripe1.tar stripe1 

real    18m34.475s 

• ~40% reduction in operation time between 48 and 1 stripe 

- Still bottlenecks at MDS. This access pattern is not recommended, 

but it is common. 
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Global description: MPI-IO 
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Collective IO 

• Enables numerous optimisations in principle 

- requires global description and participation of all processes 

- does this help in practice? 

Combine ranks 0 and 1 for single 

contiguous read/write to file 

Combine ranks 2 and 3 for single 

contiguous read/write to file 
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Cellular Automaton Model 

 

 

 

 

 

 

 

 

 

• Fortran coarray library for 3D cellular automata microstructure 

simulation, Anton Shterenlikht, proceedings of 7th International 

Conference on PGAS Programming Models, 3-4 October 2013, 

Edinburgh, UK. 
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Benchmark 

• Distributed regular 3D dataset across 3D process grid 

- local data has halos of depth 1; set up for weak scaling 

- implemented in Fortran and MPI-IO 
 

! Define datatype describing global location of local data 

call MPI_Type_create_subarray(ndim, arraygsize, arraysubsize, arraystart, 

       MPI_ORDER_FORTRAN, MPI_DOUBLE_PRECISION, filetype, ierr) 

 

! Define datatype describing where local data sits in local array 

call MPI_Type_create_subarray(ndim, arraysize, arraysubsize, arraystart, 

       MPI_ORDER_FORTRAN, MPI_DOUBLE_PRECISION, mpi_subarray, ierr) 

 

! After opening file fh, define what portions of file this process owns 

call MPI_File_set_view(fh, disp, MPI_DOUBLE_PRECISION, filetype, 

                       'native', MPI_INFO_NULL, ierr) 

! Write data collectively 

call MPI_File_write_all(fh, iodata, 1, mpi_subarray, status, ierr) 
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ARCHER XC30 
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Single file, multiple writers 

• Serial bandwidth on ARCHER around 400 to 500 MiB/s 
 

• Use MPI_File_write not MPI_File_write_all 

- identical functionality 

- different performance 

 

 
Processes Bandwidth 

1 49.5 MiB/s 

8 5.9 MiB/s 

64 2.4 MiB/s 
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Single file, collective writers 
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Lustre striping 

• We’ve done a lot of work to enable (many) collective writers 

- learned MPI-IO and described data layout to MPI 

- enabled collective IO 

- MPI dynamically decided on number of writers 

- collected data and aggregates before writing 

• ... for almost no benefit! 

• Need many physical disks as well as many IO streams 

- in Lustre, controlled by the number of stripes 

- default number of stripes is 4; ARCHER has around 50 IO servers 

• User needs to set striping count on a per-file/directory basis 

- lfs setstripe –c -1 <directory> # use maximal striping 
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Cray XC30 with Lustre: 1283 per proc 
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Cray XC30 with Lustre: 2563 per proc 
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Performance Summary 

• Serial IO never gets more than about 500 MiB/s 

- peak for a single OST 

• With default striping, never exceed 2 GiB/s 

- 4 stripes = 4 OSTs = 4 x 500 MiB/s 

• With full striping, IO bandwith increases with process count 

- can achieve in excess of 10 GiB/s 

 

• Collective IO is essential 

- replacing MPI_File_Write_all() by MPI_File_write() 

disastrous! 

- identical functionality but each IO request now processed separately 

with file locking 
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BG/Q: #IO servers scales with CPUs 
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Code_Saturne http://code-saturne.org 

• CFD code developed by EDF (France) 

• Co-located finite volume, arbitrary unstructured meshes, 

predictor-corrector 

• 350 000 lines of code 

- 50% C 

- 37% Fortran 

- 13% Python 

 

• MPI for distributed-memory (some OpenMP for shared-

memory) including MPI-IO 

• Laminar and turbulent flows: k-eps, k-omega, SST, v2f, 

RSM, LES models, ... 
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Code_SATURNE: default settings 

• Consistent with 

benchmark results 

- default striping Lustre 

similar to GPFS 
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Code_Saturne: Lustre striping 

• Consistent with 

benchmark results 

- order of magnitude 

improvement from 

striping 
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Simple HDF5 benchmark: Lustre 
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Further Work 

• Non-blocking parallel IO could hide much of writing time 

- or use more restricted split-collective functions 

- extend benchmark to overlap comms with calculation 

 

• I don’t believe it is implemented in current MPI-IO libraries 

- blocking MPI collectives are used internally 

 

• A subset of user MPI processes will be used by MPI-IO 

- would be nice to exclude them from calculation 

- extend MPI_Comm_split_type() to include something like 

MPI_COMM_TYPE_IONODE as well as MPI_COMM_TYPE_SHARED ?  
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Conclusions 

• Efficient parallel IO requires all of the following 

- a global approach 

- coordination of multiple IO streams to the same file 

- collective writers 

- filesystem tuning 

 

• MPI-IO Benchmark useful to inform real applications 

- NetCDF and HDF5 layered on top of MPI-IO 

- although real application IO behaviour is complicated 

 

• Try a library before implementing bespoke solutions! 

- higher level view pays dividends 
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