Threaded Programming

Lecture 2: OpenMP fundamentals

- Basic Concepts in OpenMP
- History of OpenMP
- Compiling and running OpenMP programs

What is OpenMP?

- OpenMP is an API designed for programming shared memory parallel computers.
- OpenMP uses the concepts of threads and tasks
- OpenMP is a set of extensions to Fortran, C and C++
- The extensions consist of:
 - Compiler directives
 - Runtime library routines
 - Environment variables

Directives and sentinels

- A directive is a special line of source code with meaning only to certain compilers.
- A directive is distinguished by a sentinel at the start of the line.
- OpenMP sentinels are:
 - Fortran: **!\$0MP**
 - -C/C++: **#pragma** omp
- This means that OpenMP directives are ignored if the code is compiled as regular sequential Fortran/C/C++.

Parallel region

- The *parallel region* is the basic parallel construct in OpenMP.
- A parallel region defines a section of a program.
- Program begins execution on a single thread (the master thread).
- When the first parallel region is encountered, the master thread creates a team of threads (fork/join model).
- Every thread executes the statements which are inside the parallel region
- At the end of the parallel region, the master thread waits for the other threads to finish, and continues executing the next statements

Parallel region

PROGRAM FRED

!\$OMP PARALLEL

!SOMP END PARALLEL

!SOMP PARALLEL

!\$OMP END PARALLEL

Sequential part

Shared and private data

- Inside a parallel region, variables can either be shared or private.
- All threads see the same copy of shared variables.
- All threads can read or write shared variables.
- Each thread has its own copy of private variables: these are invisible to other threads.
- A private variable can only be read or written by its own thread.

Parallel loops

- In a parallel region, all threads execute the same code
- OpenMP also has directives which indicate that work should be divided up between threads, not replicated.
 - this is called worksharing
- Since loops are the main source of parallelism in many applications, OpenMP has extensive support for parallelising loops.
- The are a number of options to control which loop iterations are executed by which threads.
- It is up to the programmer to ensure that the iterations of a parallel loop are *independent*.
- Only loops where the iteration count can be computed before the execution of the loop begins can be parallelised in this way.

Synchronisation

- The main synchronisation concepts used in OpenMP are:
- Barrier
 - all threads must arrive at a barrier before any thread can proceed past it
 - e.g. delimiting phases of computation
- Critical region
 - a section of code which only one thread at a time can enter
 - e.g. modification of shared variables
- Atomic update
 - an update to a variable which can be performed only by one thread at a time
 - e.g. modification of shared variables (special case)

Brief history of OpenMP

- Historical lack of standardisation in shared memory directives.
 - each hardware vendor provided a different API
 - mainly directive based
 - almost all for Fortran
 - hard to write portable code
- OpenMP forum set up by Digital, IBM, Intel, KAI and SGI. Now includes most major vendors (and some academic organisations, including EPCC).
- OpenMP Fortran standard released October 1997, minor revision (1.1) in November 1999. Major revision (2.0) in November 2000.
- OpenMP C/C++ standard released October 1998. Major revision (2.0) in March 2002.

History (cont.)

- Combined OpenMP Fortran/C/C++ standard (2.5) released in May 2005.
 - no new features, but extensive rewriting and clarification
- Version 3.0 released in May 2008
 - new features, including tasks, better support for loop parallelism and nested parallelism
- Version 3.1 released in June 2011
 - corrections and some minor new features
 - most current compilers support this
- Version 4.0 released in July 2013
 - accelerator offloading, thread affinity, more task support,...
 - now in most implementations (except offloading)
- Version 4.5 released November 2015
 - corrections and a few new features
 - some full implementations

OpenMP resources

• Web site:

www.openmp.org

 Official web site: language specifications, links to compilers and tools, mailing lists

Books:

- "Using OpenMP: Portable Shared Memory Parallel Programming", Chapman, Jost and Van der Pas, MIT Press, ISBN: 0262533022
 - covers up to Version 2.5
- "Using OpenMP—The Next Step",
 Van der Pas, Stotzer and Terboven, MIT Press,
 ISBN: 9780262534789
 - covers Affinity, Accelerators, Tasking, and SIMD

Compiling and running OpenMP programs

- OpenMP is built-in to most of the compilers you are likely to use.
- To compile an OpenMP program you need to add a (compiler-specific) flag to your compile and link commands.
 - – fopenmp for gcc/gfortran
 - openmp for Intel compilers
 - on by default in Cray compilers
- The number of threads which will be used is determined at runtime by the
 - **OMP_NUM_THREADS** environment variable
 - set this before you run the program
 - e.g. export OMP_NUM_THREADS=4
- Run in the same way you would a sequential program
 - type the name of the executable

Hello World

- Aim: to compile and run a trivial program.
- Vary the number of threads using the **OMP_NUM_THREADS** environment variable.
- Run the code several times is the output always the same?

